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1 PROOFS

Here we present the proofs of the lemmas in the main paper.
They are restated for ease of reference. WLOG is used as the
abbreviation for without loss of generality. We use 2 as the
base for the logarithm.

Lemma 1: The entropy rate of the random walk on the
graphH : 2E → R is a monotonically increasing submodular
function under the proposed graph construction.

Proof: The proof is divided into two parts. The first part
proves the monotonicity. In the second part, we show the
submodularity.

Monotonicity: δHa1
(A) ≥ 0 for all A ⊆ E anda1 ∈ E \A.

WLOG let assumea1 = e1,2. Under the selected setA∪{e1,2},
the loop weights for verticesv1 andv2 are given byc1 ≡ w1−
∑

k:e1,k∈A∪{e1,2}
w1,k and c2 ≡ w2 −

∑

k:e2,k∈A∪{e1,2}
w2,k

respectively. From Equation (11) of the main paper and with
some simple algebraic manipulations, the marginal gain from
addinge1,2 to A is given by
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Note that the terms in the two curly bracket pairs in (2)
are the entropy values of the two binary random variables
with distributions ( w1,2

w1,2+c1
, c1
w1,2+c1

) and (
w2,1

w2,1+c2
, c2
w2,1+c2

)
respectively. Since the entropy of a discrete random variable
is nonnegative, we show thatδHe1,2 (A) ≥ 0 and prove the
monotonicity.

Submodularity: δHa1
(A) ≥ δHa1

(A∪{a2}) for all A ∈ E

and a1, a2 ∈ E \ A. Based on whether these edges share a
common vertex or not, we discuss the following two cases.
1.) a1 anda2 have no common vertex. WLOG, let assume

a1 = e1,2 anda2 = e3,4. Sincee3,4 is not connected to either
v1 or v2, the addition ofe3,4 has no effect on the loop weights
of v1 andv2; therefore, we have the following equalities

c1 = w1p1,1(A ∪ {e1,2, e3,4}) = w1p1,1(A ∪ {e1,2}) (3)

c2 = w2p2,2(A ∪ {e1,2, e3,4}) = w2p2,2(A ∪ {e1,2}) (4)

wherepi,j ’s are the transition probabilities given in Equation
(11) of the main paper. As a result,δHe1,2(A ∪ {e3,4}) can
also be simplified to (1), andδHe1,2 (A∪{e3,4}) = δHe1,2 (A).
2.) a1 anda2 share a common vertex. WLOG, let assume

a1 = e1,2 and a2 = e1,3 where v1 is the shared vertex.
Due to the shared vertex, the loop weight for vertexv1
and v2 after the addition ofe1,3 are given byd1 ≡ w1 −
∑

k:e1,k∈A∪{e1,2,e1,3}
w1,k = c1 − w1,3 and d2 ≡ w2 −

∑

k:e2,k∈A∪{e1,2,e1,3}
w2,k = w2−
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w2,k = c2

respectively. The marginal gain from the addition ofe1,2 to
A ∪ {e3,4} is equal to
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By subtracting (5) from (1), we have

δHe1,2(A)− δHe1,2 (A ∪ {e3,4}) (6)
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The last equation is an application of the strictly increasing
property ofg(x) ≡ (x + ξ) log(x + ξ) − x log(x) whereξ =
w1,2

wT
in this case.

From the above case discussions, we show thatδHe1,2(A) ≥
δHe1,2(A ∪ {e3,4}) and complete the proof.

Lemma 2: The balancing functionB : 2E → R is
a monotonically increasing submodular function under the
proposed graph construction.

Proof: We prove the monotonicity and submodularity
separately.

Monotonicity: δBa1
(A) ≥ 0 for all A ⊆ E anda1 ∈ E \A.

WLOG let assumea1 = e1,2, v1 be in clusterSi, and v2
be in clusterSj . From Equation (16) of the main paper, the
probability that a randomly picked vertex is inSi andSj is
given bypZA

(i) = |Si|
|V | andpZA

(j) =
|Sj |
|V | respectively.

To prove the monotonicity, we discuss the case wherei 6= j

— v1 andv2 are in two different clusters givenA. 1 Let pi =
pZA

(i) andpj = pZA
(j). The addition ofe1,2 to A mergesSi

andSj, and the probability that a randomly picked vertex is
in the merged cluster is equal topZA

(i)+pZA
(j) =

|Si|+|Sj|
|V | .

The increase in the balancing function is then given by

δBe1,2(A) = H(A ∪ {e1,2})−H(A)−NA∪{e1,2} +NA

= 1− (pi + pj) log(pi + pj) + pi log pi + pj log pj (8)

= 1 + pi log
pi

pi + pj
+ pj log

pj

pi + pj
(9)

≥ 1 + (pi + pj) log(
pi + pj

2(pi + pj)
) = 1− (pi + pj) ≥ 0. (10)

Note that the first inequality in (10) is an application of the
log-sum inequality. From (10) we prove the monotonically
increasing property.

Submodularity: δBa1
(A) ≥ δBa1

(A ∪ {a2}) for all A ∈ E

anda1, a2 ∈ E\A. To prove the submodularity, we discuss the
cases where the addition ofa1 to A combines two clusters.
If it does not, both sides of the above equation equal zero
and the submodularity holds. WLOG let assumea1 = e1,2
and a2 = e3,4. Depending on whether the addition ofe3,4
combines two clusters or not, there are three derivative cases.

1. If i = j, thenδBa1
(A) = 0 and the monotonicity holds.
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1.) Let assume the addition ofe3,4 combines the clusters
Si andSj . This meansv1 andv2 are in the same cluster given
A∪{e3,4}. Therefore the addition ofe1,2 to A∪{e3,4} has no
effect on the graph partition. Both the number of clusters and
the cluster membership distribution remain the same; hence,
δBe1,2(A) ≥ δBe1,2(A ∪ {e3,4}) = 0.
2.) In the case thate3,4 combines some other clustersSk and

Sm where|{k,m}∩{i, j}| = ∅ or e3,4 does not combine any
clusters. The addition ofe1,2 will still mergeSi andSj . More-
over,pZA∪{e3,4}

(i) = pZA
(i) andpZA∪{e3,4}

(j) = pZA
(j). As

a resultδBe1,2(A) = δBe1,2(A ∪ {e3,4}).
3.) Suppose that the addition ofe3,4 combinesSk to Si. Let

pk = pZA
(k). The marginal gain obtained from addinge1,2 to

A ∪ {e3,4} is given by

δBe1,2(A ∪ {e3,4}) = −(pi + pj + pk) log(pi + pj + pk)

+ (pi + pk) log(pi + pk) + pj log(pj) + 1. (11)

By subtracting (11) from (8), we have

δBe1,2(A) − δBe1,2(A ∪ {e3,4})

= (pi + pj + pk) log(pi + pj + pk)− (pi + pj) log(pi + pj)

− ((pi + pk) log(pi + pk)− pi log pi)

= g(pi + pj)− g(pi) ≥ 0 (12)

Note that the last inequality is an application of strictly
increasing property of the functiong(x) = (x + ξ) log(x +
ξ)− x log(x).

From showing the diminishing return property for the above
cases, we complete the proof.

Lemma 3: Let E be the edge set, and letI be the set of
subsetsA ⊆ E which satisfies: 1.)A is cycle-free and 2.)
A constitutes a graph partition with more than or equal to
K connected components. Then the pairM = (E, I) is a
matroid.

Proof: The proof is given by showing thatM satisfies
the three matroid conditions.
1.) It is straightforward to see that the empty set is an

independent set of the matroid — it contains no cycles and
constitutes a|V |-partition whereN∅ = |V | > K.
2.) Let I ∈ I andI ′ ⊆ I. This implies thatI has no cycles

and NI ≥ K. SinceI ′ ⊆ I, the setI ′ can be obtained by
removing edges from the setI. The removal of edges does not
add cycles and increases the number of connected components.
Therefore the setI ′ also contains no cycles andNI′ ≥ K.
3.) Let I1 and I2 be two independent sets inI such that

|I1| < |I2|. The independent set assumptions implies the asso-
ciated connected components ofI1 andI2 satisfy the following
relations:NI1 = |V | − |I1| ≥ K, NI2 = |V | − |I2| ≥ K, and
|I1| < |I2| =⇒ |V |− |I1| > |V |− |I2| ≥ K. From the above
statements we have the following equations.

NI1 > NI2 (13)

NI1 = |V | − |I1| ≥ K + 1 (14)

We now prove that there exists somee ∈ I2 − I1 such
that NI1∪{e} ≥ K and the setI1 ∪ {e} is cycle-free; i.e.,
I1 ∪ {e} is an independent set. Since adding one edge to a
graph decreases the number of connected components by at

most one, Equation (14) impliesNI1∪{e} ≥ K for e ∈ I2−I1.
The remaining part of the proof is achieved by contradiction.

Let us assume there is no edgee ∈ I2−I1 such thatI1∪{e}
is cycle-free. In other words, adding any edgee in I2 − I1 to
the setI1 will result in a cycle and leaves the number of
connected components in the graph unchanged,NI1∪{e} =
NI1 . Thus by adding all the edges fromI2 − I1 to the setI1,
the number of connected components will remain asNI1 , i.e.,
NI1∪(I2−I1) = NI1∪I2 = NI1 .

We know that the setI1∪I2 can also be obtained by adding
edges fromI1 − I2 to I2. Since adding edges to a graph can
only decrease the number of connected components, we have
the following relationNI1∪I2 ≤ NI2 =⇒ NI1 ≤ NI2 . This
contradicts Equation (13) and thus the lemma is proved.


