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1 PROOFsS respectively. The marginal gain from the additioneaf, to

Here we present the proofs of the lemmas in the main papér- {¢s,.4} is equal to

They are restated for ease of reference. WLOG is used as the wy,2 +dy w2+ di

abbreviation for without loss of generality. We use 2 as the 0Hern(AU{esa}) = { wr log( wr )

base for the logarithm. w19 w19 dy dy Wo 1 + do
Lemma 1: The entropy rate of the random walk on the — w—TIOg(w—f) - w_TlOg(w_T)} + {TT

graph# : 2¥ — R is a monotonically increasing submodular Woq+do.  Woq W 1 do do

function under the proposed graph construction. log(— ) — o log( wr ) — wr 10g(w—T)} (5)

Proof: The proof is divided into two parts. The first partB biracting (5) f 1 h

proves the monotonicity. In the second part, we show i subtrac ing (5) from (1), we have

submodularity. He, o (A) — 0He, , (AU {e34}) (6)
Monotonicity: dH,, (4) > 0 forall A C E anda; € E\ A. wy o +dy + w3 wy g +dy + w3

WLOG let assume; = e; ». Under the selected set {e; 2}, =1 wop s )

the loop weights for vertices, andv,, are given by = wq — di +wy s dy + wy 3 wy o +dy wy o +d;

Zk:el,keAU{elwg} W1,k andcy = wy — Zk:ez,keAU{el,z} W2k - wr 1Og( w - )} - { 711} log( 7U}T )

respectively. From Equation (11) of the main paper and with ) dy dy + w1 3 dy

some simple algebraic manipulations, the marginal gaimfro — — log(—)} = g(———=) — g(—) >0 @

wr wTr wTr wTr

addinge; > to A is given b
912 9 Y The last equation is an application of the strictly incregsi

Hoy o (A) = {2 o2 T 01y W12, (W2 property ofg(z) = (x + &) log(w + €) — wlog(z) whereg =
wr wr wr »— in this case.
_a 1Og(c_1)} + {“’271 T log( L2 + 2 From the above case discussions, we showdkat , (A) >
wr wr wr wr 0He, ,(AU{es4}) and complete the proof. O
= D2 jog(B2L) - 2 jog(2) (1) Lemma 2 The balancing function3 : 2¥ — R is
wr wr wr wr a monotonically increasing submodular function under the
n n proposed graph construction.
= 2Ty T2 2Ty, A Proof: We prove the monotonicity and submodularity
wr w1,2 + C1 U}LQ w172 + C1 Separately
log (L2 Ta )} + Wa1 + 02{ W21 g L2L + 2 Monotonicity: 63,,(A) > 0 forall A C E anda; € F\ A.
€1 wr waz,1 + C2 W2,1 WLOG let assumer; = e1,2, v1 be in clusterS;, and v,
. c2 1Og(w2,1 + 02)} > 0. ) be in clusterS;. From Equation (16) of the main paper, the
wa1 + C2 C2 o probability that a randomly picked vertex is ) and.S; is

. . S . S .
Note that the terms in the two curly bracket pairs in (2Jiven bypz, (i) = %4 andpz, (j) = Bl respectively.
are the entropy values of the two binary random variablesT0 prove the monotonicity, we discuss the case whigfej
with distributions (12 o) and (2! 2y —u andu, are in two different clusters given. ! Let p;

wi,2+c1’ wy2+cy wa,1+c2? w2 1+c2

respectively. Since the entropy of a discrete random viria#z. (1) andp; = pz, (j). The addition ofe, » to A mergesS;
is nonnegative, we show that{,, ,(A) > 0 and prove the and S;, and the probability that a randomly picked vertex is

monotonicity. in the merged cluster is equal tg;, (i) +pz, (j) = W
Submodularity: §H,, (A) > 6H,, (AU{az}) forall A € E The increase in the balancing function is then given By

andaj,az € E'\ A. Based on whether these edges share g (A) = H(AU {e12}) — H(A) — N4, N4
common vertex or not, we discuss the following two cases. ~ * ’ {er2}
1.) a; anda, have no common vertex. WLOG, let assume — 1 — (pi + pj)log(pi + p;j) + pilogp; + p; logp; (8)

a; = e1,2 anday = e3 4. Sincees 4 iS not connected to either =1 + p; log Pi + p;log _Pi (9)

vy Or v, the addition ofs 4 has no effect on the loop weights Pi T Pj Pi T+ Pj

of v; anduw.; therefore, we have the following equalities > 14 (pi +pj) log(i?i P )) =1—(pi +p;) 2 0. (10)
- 2(pi +pj -

v =wipLi(AU{ers esah) = wipa(AU{ead) G Note that the first inequality in (10) is an application of the
co = wap22(AU{er2,e54}) = wapa2(AU{e12})  (4) |og-sum inequality. From (10) we prove the monotonically

, . . . . .1 i ty.
wherep; ;'s are the transition probabilities given in Equatiod'c'€aSIng Proper
(11) of the main paper. As a resultt., ,(A U {e34}) can Submodularity: 0B, (A) = 6Ba, (AU {az}) forall A e £
also be simplified to (1), and (Au{eg ) = 0He, L(A). anday, as € E\ A. To prove the submodularity, we discuss the
2.) ay anda, share A common vertex. WLOG. let assum&ases where the addition f to A combines two clusters.
a ~ 6112 ané 4y = e15 wherew is t.he shar,ed vertex. | it does not, both sides of the above equation equal zero
Due to the shared vertex, the loop weight for vertex and the submodularity holds. WLOG let assume = e;

and v, after the addition ofe; 5 are given byd; = w; — and a; = es,4. Depending on whether the addition ef 4
) Wy = 071 wis and dy = ws combines two clusters or not, there are three derivativesas
k:e1 r€AU{e1,2,e1,3} s - - ) = —

kiea n€AU{e1 2,61 3} wa g = w272k:62,k€AU{61,2} Wa, |k = C2 1. If ¢ = j, thendBa, (A) = 0 and the monotonicity holds.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

1.) Let assume the addition ef; , combines the clusters most one, Equation (14) implie¥;, .y > K fore € I, — 1.
S; andS;. This means); andv, are in the same cluster givenThe remaining part of the proof is achieved by contradiction

AU{es 4}. Therefore the addition af; 2 to AU{e3 4} has no

Let us assume there is no edge I, —I; such thatl; U{e}

effect on the graph partition. Both the number of clusterd aiis cycle-free. In other words, adding any edgm I, — I; to
the cluster membership distribution remain the same; hentee set/; will result in a cycle and leaves the number of

0Be, ,(A) > 6Be, ,(AU{es4}) = 0.
2.) Inthe case that; 4 combines some other clustefs and

connected components in the graph unchangéd, ., =
Ny,. Thus by adding all the edges frofs — I to the setl;,

Sy where|{k, m}N{i, j}| = 0 or e5 4 does not combine any the number of connected components will remain\asg, i.e.,

clusters. The addition af; » will still merge .S; and.S;. More-
Over'pZAu{eg,A} (i) = pza (i) andeAu{eg,A} (J) =pz.(j). As
aresultoB., ,(A) = 0B8e, ,(AU {e3.4}).

3.) Suppose that the addition ef 4 combinesS;, to S;. Let
pr = pz, (k). The marginal gain obtained from addings to
AU{es 4} is given by

0Be, ,(AU{esa}) = —(pi +pj + pi)log(pi +pj + pr)

+ (pi + p) log(pi + pr) + pj log(p;) + 1. (11)
By subtracting (11) from (8), we have
0Be, 5 (A) — 0B, ,(AU{e34})

= (pi + pj + pr)log(pi + p; + i) — (pi + pj) log(pi + pj)
— ((pi + pi) log(pi + pr) — pilogp:)

=g(pi+p;j) —gpi) >0 (12)

Nrus—n) = Nnur, = Ny,

We know that the sef; UI; can also be obtained by adding
edges from/; — I to I>. Since adding edges to a graph can
only decrease the number of connected components, we have
the following relationNy,ur, < N;, = Ny, < Nyp,. This
contradicts Equation (13) and thus the lemma is provedl

Note that the last inequality is an application of strictly

increasing property of the function(z) = (z + &) log(x +

¢) — wlog().
From showing the diminishing return property for the above
cases, we complete the proof. O

Lemma 3: Let £ be the edge set, and I&t be the set of
subsetsA C FE which satisfies: 1.)4 is cycle-free and 2.)

A constitutes a graph partition with more than or equal to
K connected components. Then the p&ir = (E,Z) is a
matroid.

Proof: The proof is given by showing that/ satisfies
the three matroid conditions.

1.) It is straightforward to see that the empty set is an
independent set of the matroid — it contains no cycles and
constitutes gV |-partition whereNy = |V| > K.

2.) LetI € Z andI’ C I. This implies thatl has no cycles
and N; > K. Sincel’ C I, the setl’ can be obtained by
removing edges from the sét The removal of edges does not
add cycles and increases the number of connected components
Therefore the sel’ also contains no cycles and;, > K.

3.) Let I; and I, be two independent sets if such that
|I1] < |I2]. The independent set assumptions implies the asso-
ciated connected componentsipfand/, satisfy the following
relations:N;, = |V| — |I1| > K, Ni, = |V| - |Iz] > K, and
|| < |Io] = |V|—|L| > |V]|—|Iz] > K. From the above
statements we have the following equations.

N]l >N]2
Ni, =V|-|h| 2K +1

(13)
(14)

We now prove that there exists somec [, — I; such
that N;,ugp > K and the setl; U {e} is cycle-free; i.e.,
I, U{e} is an independent set. Since adding one edge to a
graph decreases the number of connected components by at



