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Abstract —We propose a new objective function for clustering. This objective function consists of two components: the entropy rate of
a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the
balancing function encourages clusters with similar sizes and penalizes larger clusters that aggressively group samples. We present a
novel graph construction for the graph associated with the data and show that this construction induces a matroid— a combinatorial
structure that generalizes the concept of linear independence in vector spaces. The clustering result is given by the graph topology that
maximizes the objective function under the matroid constraint. By exploiting the submodular and monotonic properties of the objective
function, we develop an ef cient greedy algorithm. Further more, we prove an approximation bound of % for the optimality of the greedy
solution. We validate the proposed algorithm on various benchmarks and show its competitive performances with respect to popular
clustering algorithms. We further apply it for the task of superpixel segmentation. Experiments on the Berkeley segmentation dataset
reveal its superior performances over the state-of-the-art superpixel segmentation algorithms in all the standard evaluation metrics.

Index Terms —clustering, superpixel segmentation, graph theory, information theory, submodular function, discrete optimization
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1 INTRODUCTION the quality of a given cluster. However, the notion of a 'gbod
gluster is problem dependent. Quite often it is possible to
enerate an example for which a given objective function
lils. In this work, we are interested in obtaining compact,
gomogeneous, and balanced clusters. In a compact cluatar, d
points are close to each other. In a homogeneous cluster data
gl%{nts share similar inter-element properties. The notién

g

LUSTERING is a fundamental task in many domain
Csuch as machine learning, computer vision, marketin
and biology. In almost every scientic eld dealing with
empirical data, researchers attempt to get a rst impressi
on their data by identifying groups of similar charactecist
Several clustering methods have been proposed in differ L
communities, and many of them have promising performanc anced clusters refers to avoiding Iarge clusters tf‘@temg
However, they are usually based on different assumptior, aswel_y_ group samples. In order tp o_btam clu_sters W't.h _these
it is dif cult to compare one criterion to another. Furtheore, qualities, we propose a novel objective function consisoh
most desirable criteria lead to NP-hard problems. Thughéur two components: 1.) the _entropy rate of a ra”don_"' V\{alk_on
progress in clustering hinges on the careful design of new graph and 2.) a balancing term on the cluster distribution.
jective functions applicable to existing or newer problemith e entropy rate fayors compact and homogeneou_s ClL.JSt.erS
provable theoretical guarantees and promising perforeanc V\{hereas the balancmg term encourages glusters with .$|m|Ia
standard datasets. This is precisely the goal of this paper. SIZES. They are motivated by the principle of maximurm
Among a wide variety of clustering algorithms, some co entropy [1]: we seek a graph topolo_gy _sugh that the resulting
pute clusters using a single objective function, some Dbtarlandom walk and cluster membership distribution yield gdar

. e . : uncertainty.
clusters recursively using intermediate cost functioms] a . . .
few others identify clusters based on a particular prajecti Our formulation leads to an algorithm with a provable bound

(subspace, manifold) of data points. This work belongs Eon the optimality of the solution. We show that our objective

the rst class. We formulate the clustering problem as unction is a monotonically increasing submodular funetio
graph topology selection problem where data points anda thag?;ﬂg;lﬁ;gﬂzgpiﬁ?u;{] drgggf] r:igﬁg;'i&%‘;;fgtﬁg;um
pairwise relations are respectively mapped to the vertres y A LI
edges in a graph. Clustering is then solved via nding a graé@lgﬁﬁd tgo?gvsﬁﬁ%mirg:?g égiclgl\ilfs[zzfxlt(ennos\;v?: chlriﬁﬁle
topology maximizing the objective function. g som y 12l 9

: o . a function is submodular enables us to better understand
Various objective functions have been proposed to measiire . L -

€ underlying optimization problem. In general, maximiza

_ _ _ ~_ tion of submodular functions leads to NP-hard problems,
o (L)ébzlgg'ri eZ”?Mghgag:;”g%mgeaﬁ Avgtzhl3'\g't5“b'5h' BeC for which the global optimum solution is dif cult to obtain.
E-mail: f mliu, oncel, ramalingag@merl.com Nevertheless, by using a greedy algorithm and exploiting
R. Chellappa is with University of Maryland College Park, D742 the matroid structure in our problem formulation, we obtain
E-mail: rama@umiacs.umd.edu a bound of} on the optimality of the solution. Recently,
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maximization of submodular functions with various conisita  While NCut is effective, computing an NCut solution re-
has been applied in several real word problem domains: senguires eigen-decomposition, which is computationallgirse
placement [3] (subject to a cardinality constraint), oalic for large-scale problems [20]. We formulate clustering as a
detection in networks [4] (subject to a modular cost comstya graph topology optimization problem and propose an objecti
and word alignment [5] (subject to a matroid constraint). function favoring the formation of compact, homogeneounsd, a
We evaluate the proposed algorithm using standard datadsttanced clusters. The resulting algorithm is ef cient aaah
in the UCI repository and compare it to the state-of-the-de easily applied to large datasets.
clustering algorithms. In addition, we study a particullrse Correlation clustering [18] seeks a clustering output that
tering problem in computer vision — the superpixel segmemaximizes both the number of similar edges within clusters
tation problem [6]. Superpixel segmentation is a procegssiand the number of dissimilar edges between clusters. In some
which divides an image into disjoint and perceptually unsense, the entropy rate function encourages a similar tlgec
form regions, termed superpixels. A superpixel represiemta however, the balancing function further promotes the ferma
greatly reduces the number of primitives in an image aribn of clusters having a similar size. Our problem formialat
provides coherent spatial support for feature computatitin is related to theK -balanced partitioning problem [21] where
has become a common preprocessing step for many advaneegraph is partitioned ik connected components and the
vision algorithms [7][8][9][10]. The desired propertie§ a number of elements in each component is about the same.
superpixel segmentation algorithm depend on the appicatiOur balancing function imposes a soft constraint for olatajn
of interest. We list some of the desired properties below: clusters of similar sizes.

Every superpixel should overlap with only one object. )

The set of superpixel boundaries should be a supersetiob-2 Random walk modeling

object boundaries. Meila and Shi [22] discuss the link between the NCut objeti
The mapping from pixels to superpixels should not redudgnction and a random walk model. They show that solving the
the achievable performance of the intended applicatiodCut partition is equivalent to nding the low conductiviset

The above properties should be obtained with as feiy @ random walk. Harel and Koren [23] propose a separation
superpixels as possible. operator based on the escape probability in a random walk, to

We show that the proposed objective function possessﬂ?rpe'ﬂf the distinction be_tween.intra—cluster Iinks_ artdrin
these required properties. Speci cally, the entropy rateofs ClUSter links. The operator is applied repeatedly untilgheph
compact and homogeneous clusters—encouraging division'dflivided into several disconnected components. _
images on perceptual boundaries, whereas the balancimg ter Yen €t al. [24] propose a similarity measure for clustering,
encourages superpixels with similar sizes—avoiding lage which IS based on the average passing time b.etween. two
perpixels straddling multiple objects. statgs in a randomlwalk. Computing this metn_c requires
solving the pseudo inverse of the graph Laplacian matrix.
Leo [25] presents an interactive image segmentation dlgori
1.1 Related Work based on random walk modeling. With user-speci ed labels on
There is a large body of work in clustering. Below we onlgome pixels, it computes the probabilities that a randonk wall
review a few related works and refer the interested readerrtgaches these labeled pixels starting from an unlabelesl. pix
survey papers such as [11], [12], [13], [14]. The unlabeled pixel is then assigned the label with the krge
probability.
1.1.1 Graph-theoretic approaches
Graph-theoretic clustering methods are preferred wheg odi-1.3 Information-theoretic approaches
the pairwise relations of data are available. Some repres@&anerjee et al. [26] propose a K-means like clustering algo-
tative works in this category include [15], [16], [17], [18] rithm based on mutual information. The length of minimal
In [15], clustering is achieved by partitioning a minimakpanning trees is used as an estimator of mutual information
spanning tree into disjoint sets. It rst constructs a mialm in a clustering formation in [27]. Our clustering objective
spanning tree from data graph and then sequentially deletesction is also derived using information theory where the
edges whose similarity score are signi cantly smaller tifzen entropy rate and entropy are used to measured the randomness
neighboring edges. The edge deletion process uses a singla random process and random variable respectively.
threshold and does not accommodate intra-cluster vamiatio
The proposed algorithm also forms disjoint sets via spapnid-1.4 Submodular objective functions
trees, but the formation is attained through maximizing [darasimhan et al. [28] present two submodular clustering
submodular function de ned on the graph topology. objective functions. The rst one is based on the minimal
Wu and Leahy [16] propose using the min-cut algorithm tdistance between the elements of different clusters; vasere
iteratively bisecting the graph. The min-cut cost can beexbl the second is related to the description length of the alsiste
optimally within each iteration. Nevertheless it prefedding Nagano et al. [29] use an objective function based on minimum
a small set of isolated vertices and is vulnerable to outliemverage cost. Clustering with these objective functiomaside
This drawback is elegantly handled in a seminal paper on néo- submodular function minimization problems and can be
malized cut (NCut) [17] using a normalization term favoringolved optimally in polynomial time. Our formulation leads
balanced clusters. NCut is related to spectral clustet®ig[ to a constrained submodular maximization problem, which is
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more dif cult. Recently, Jegelka and Bilmes [30] propose a an efcient greedy algorithm with an approximation
submodular cost function for image segmentation called the bound of%.
cooperative graph cut. It gives bias to cutting edges etih@i We evaluate the proposed algorithm for clustering using
cooperative patterns. To solve the cooperative cut problem standard datasets and show that it renders improved
they derive a bounding function and show that the st-cut performances in various clustering performance metrics.
algorithm [31] can be used to iteratively minimize the bosind We show that the proposed algorithm signi cantly out-
to produce the desired graph partitioning. perform many state-of-the-art superpixel segmentation
algorithms in the standard performance metrics on the
1.1.5 Superpixel segmentation Berkeley segmentation benchmark— a reduced underseg-
Graph-based image segmentation work of Felzenszwalb and mentation error up t60% a reduced boundary miss rate
Huttenlocher (FH) [32], mean shift [33], and watershed [34] up to40% and a tighter bound on achievable segmen-

are three most popular superpixel segmentation algoritRis
and watershed are fast; mean shift is robust to local variati
However, they tend to produce superpixels with irregulzesi

tation accuracy. In addition, the proposed algorithm is
ef cient— takes only about 2.5 seconds to segment an
image of size 481x321.

and shapes, which sometimes straddle multiple objects ashe paper is organized as follows. The notations and

pointed out in [35], [36]. background discussions are given in Section 2. We present th
Ren and Malik [6] propose using NCut for superpixeppjective function in Section 3 and discuss its optimizaiio

segmentation. NCut has the nice property of producing sgection 4. Extensive experimental validations are pravite

perpixels with similar sizes and compact shapes which ag@ction 5. We conclude and discuss some promising future

preferred for some vision algorithms [6], [7]. One drawbaclesearch directions in Section 6. A preliminary versionhis t

of NCut is its computational requirement—it takes severgjork appeared as a superpixel segmentation study in [42]. In

minutes for segmenting an image of moderate (481x321) siggis paper, we extend it for the general clustering problech a
LeVinShtein et a.l. [35] prOpOSG the TUrbOPiXeI a|gOI’ithrTB.aS provide additiona' experimental Va”dation_

ef cient alternative. TurboPixel is based on evolving bdary

curves from seeds uniformly placed in the image. Recently

Veksler et al. [36] pose the superpixel segmentation prolale

a GraphCut [37] problem. The regularity is enforced throug% PRELIMINARIES

a dense patch assignment technique for allowable pixeldabe _ . . . .
These methods produce nice image tessellations. Ne\)_é‘r-th_'s sec_tlon, we mtrodu_ce the mathematical preliminar-

theless, they tend to sacrice ner image details owing &S including graph notations, random walk models, and

their preference for smooth boundaries. This is re ected fﬁforr?atlon—theotr)gtlc.me;rlcs..They arel “Sed‘?' for formg@td
the low boundary recall reported in [35], [36]. In contramiy the clustering objective function. We also discuss submodu

balancing objective, which regularizes the cluster siagsjds larity, monotonicity, and matroid concepts that are used fo

the over-smoothing problem and hence better preservestob@ﬂ'alyz'ng the prop(_artl_es .Of the objective function and the
boundaries. optimality of the optimization procedure.

Moore et al. [38], [39] propose an alternative approach for Graph representation: We useG = (V;E) to denote
obtaining superpixels aligned with a grid. In [38], a greed§n undirected graph wheré is the vertex set and is
algorithm is used to sequentially cut images along sonfa® €dge set. The vertices and edges are denoted byd
vertical and horizontal strips; whereas in [39], the prable & respectively. The similarity between vertices is given by
is solved using a GraphCut algorithm [37]. the nonnegative weight functiow : E ! R* [f Og. In

Superpixel segmentation can also be jointly solved wifd? undirected graph, the edge weights are symmetric, i.e.
stereo matching. Taguchi et al. [40] propose an EM-lik&:i = Wi -
iterative procedure to jointly estimate scene depth and segGraph partition: A graph partitionS refers to a division
mentation using various cues. Bleyer et al. [41] pose that joiof the vertex seV into disjoint subset§ = fS;;S;; 15 Sk g

estimation problem in an energy minimization framework. such thatS;\ §; = fori 6 j and ;S = V. We pose
the graph partition problem as a subset selection problam. O

12 Contributions goal is to select a subset of edge® E such that the resulting
' _ T _ _ graph(V; A) consists ofK connected components/subgraphs.

The main contributions of this paper are listed below: Entropy: The uncertainty of a random variable is measured
We pose the clustering problem as a maximization propy entropyH . The entropy of a discrete random variable,
lem on a graph and present a novel objective function @yith a probability mass functiomx , is de ned by
the graph topology. This function consists of an entropy
rate term and a balancing term for obtaining clusters with H(X)=
desired properties. ©2X
We prove that the entropy rate and the balancing function
are monotonically increasing and submodular. where X is the support ofX. The conditional entropy,
By embedding our problem in a matroid structure and (X jY), quanti es the remaining uncertainty X given that
using the properties of the objective function, we presetite value of a dependent random varialMe,is known. It is

px (x)log px (x) )
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de ned as X /\Ni,i W],] Wi,i w i,i+Wi.j WJ,J lw “+VD
H(XjY) = py (Y)H (X]Y =y)
X x _ _ )
= Py (Y)  Pxjv (Xiy)logpx v (Xjy)
y2Y X2X
. . . Wi w;; 0
where Y is the support ofY and px;y is the conditional lected nselected
probability mass function. \_ Guselecte &;uns )

Entropy rate: The entropy rate quanti es the uncertainty
of a stochastic procesé = fXjt 2 Tg whereT is some Fig. 1. lllustration of the graph construction. If an edge
index set. For a discrete random process, the entropy ratéjs is unselected in cluster formation, its weight is redis-
de ned as an asymptotic measure tributed to the loops of the two vertices.

H(X) = lim H (XX 15X 2555 Xa); 3)
' is the marginal gain obtained by adding the elen®nto the

which measures the remaining uncertainty of the randosrrétA This property is also referred as the diminishing return
process after observing the past trajectory. For a statjon ) property 9

. L . roperty, which says that the gain of a module is less if it is
stochastic process, the limit in (3) always exists. In thx-zecaincluded in a later stage [44].

of a stationarylst-order Markov process, the entropy rate has Monotonically increasing set function: A set functionF

a simple form is monotonically increasing iF (A) F(A[f ayg) for all

H(X)= !ilgn H (XXt 1) A E. We sometimes refer this property as monotonicity in
= Jim H(X2iX1) = H (X2iX1): 4y e paper
= am (X2jX1) = H(X2jX4): ) Matroid: A matroid is an ordered paiM = (E;l)

The rst equality is due to thelst-order Markov property cor_lsis.ting of a nite _seE and a col_lgction of subsets oE
whereas the second equality is a consequence of statipnaf@tisfying the following three conditions:
For more details, one can refer to [43, pp.77]. 1) ;21 .

Random walks on graphs:Let X = fXjt 2 T; X 2 Vg 2) If 121 andl® 1,thenl®21 .
be a random walk on the gra@h= ( V; E) with a nonnegative ~ 3) If I1 andl are inl andjlij < jlj, then there is an
similarity measurav. We use a random walk model described elementeof I, |1 suchthat;[ e21.

in [43, pp.78]— the transition probability is de ned as The members of are the independent sets M. Note that
= Pr(Xeus = ViiX, = Wi there exist several other de nitions for matroids which are
Pij = PriXea = vjXe=w) = Wi ®) equivalent. For more details, one can refer to [45, pA5].

Later in the paper we prove that our objective function is

P
wherew; = . Wik Is the sum of incident weights of ; . .
! kiey 2E K 9 monotonically increasing and submodular.

the vertexv;, and the stationary distribution is given by
Wi, W2,

— . v o \T ¢ 7L
( 1y 2y s jVj) (WT,WT,"., W

(6) 3 PROBLEM FORMULATION

Pivj ) o We pose clustering as a graph partitioning problem. To parti
wherewr = {2} w; is the normalization constant. For aion the graph intd< clusters, we search for a graph topology

disconnected graph, the stationary distribution is notju@i hat hask connected subgraphs and maximizes the proposed

However, in (6) is always a stationary distribution. It cangpjective function.
be easily veri ed through = PT whereP =[p]; is the
transition matrix. The entropy rate of the random walk can %ﬁl Graph Construction
computed by applying (2) '

We map a dataset to a gra@h= ( V; E) with vertices denoting

H(X) = H(X2jX1) = iH(X2jX1 = vi) the data points and the edge weights denoting the pairwise
X X Fox similarities given in the form of a similarity matrix. Theege
_ Wij | Wi Wi Wi . .
= ——log— + — log — (7) many ways for generating such a mapping. Some examples
Wt Wt Wt Wt

i i include the fully-connected graph, a local xed-grid graph
Submodularity: Let E be a nite set. A set functionF : OF & nearest-neighbor graph. The proper choice of the graph
2§ 1 R, is submodular if structure is itself an important problem in clustering [46]
however, it is not the focus of the paper. We simply map
F(A[f aug) F(A) F(A[f ar;a20) F(A[f a2g) (8) a dataset into &-nearest neighbor graph for clustering. For
superpixel segmentation, we exploit the image grid stmectu
and use a 8-connected graph.
Fa,(A)  Fa (A[f axg 9) Our goal is to partition the graph into disjoint components.
It is achieved by selecting a subset of eddes E such that
the resulting graphG = (V; A), contains exactlk connected
Fa,(A) F(A[f aag) F(A) (10) subgraphs. In addition, we also assume that every vertex of

or, equivalently,

forall A E andaj;;a, 2 E nA where
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/ \ p(vajvi) = % p(Vsjvs) = %
(a) Entropy Rate = 0.81 (b) Entropy Rate = 0.43
o
o
3.3
A O O O 00O
o
(o]

NG

/(c) Entropy Rate = 0.64 (d) Entropy Rate = 0.61 \

o p(v2jvz2) = 0

4 o 5 02

4 o g o oo 3 Fig. 3. lllustration of the transition probabilities given
o selecting edges e;.» and e;.3.

NG _/

Fig. 2. We show the role of entropy rate in obtaining We illustrate the computation of the entropy rate under
compact and homogeneous clusters. We use a Gaussian the proposed graph construction using the following exampl
kernel to convert the distances, the numbers next to the which is also shown in Figure 3. Given a graph with three
edges, to similarities. Each of these clustering outputs verticesfvy;vs; Vag ang the input similarity matrix

contains six different clusters shown as connected com- 20 30
ponents. As described in Section 3, every vertex has a W= @ 20 ' 1:0 A (13)
loop which is not shown. The entropy rate of the compact 30 10

cluster in (a) has a higher objective value than that of _ _
the less compact one in (b). The entropy rate of the the task is to compute the entropy raté(fe;s [ €30); i.e.
homogeneous cluster in (c) has a higher objective value the entropy rate of the random walk when selecting the edges

than that of the less homogeneous one in (d). e1;2 andez;3 as shown in Figure 3. From (6) the stationary
distribution of the random walk is equal to
— S . 3 . 4 T.
the graph has a self-loop. Although the self-loops do natcaff =( 1 1—2) - (14)

graph partitioning, they are necessary for the proposedoran

. . ) and the transition matrix takes the following form
walk model. When an edge is not includedAn we increase 1 g

the edge weight of the self-loop of the associated vertices % é ?
in such a way that the total incident weight for each vertex P=@ 3 (13 i A (15)
remains constant (See Figure 1). 0 7 %
The entropy rate is then equal kb(fe;.o [ €2.309) = 0:905
3.2 Entropy Rate We establish the following result on the entropy rate of the

We use the entropy rate of the random walk on the construct@pdom walk model.

graph as a criterion to obtain compact and homogeneoud-€mma 1:The entropy rate of the random walk on the
clusters. The proposed construction leaves the statiogiary 9"aPhH : 25 | Ris a monotonically increasing submodular
tribution of the random walk (6) unchandedhere the set function under the proposed graph construction. _
functions for the transition probabilities; : 25 | R are It is easy to see that the entropy rate is monotonically

given below: increasi_ng, since_ the inclusion of any edge ingre.ages_ the
8 . o uncertainty of a jump of the random walk. The diminishing

2w if i) and e; 2 A; return property comes from the fact that the increase in

pij (A)=_0 ifi6) and e 2A; uncertainty from selecting an edge is less in a later stage

z 1 jrey 2a Wil i1 = j: because it is shared with more edges. The proof is given in

Wi

(11) the supplementary material.

Consequently, the entropy rate of the random walkGrF . .
(V;A) can be written as a set function: 3.3 Balancing Function
X X We utilize a balancing function, which encourages grouping
H(A) = i Py (A)log(pij (A)) (12) of data points into clusters that have similar sizes. Bet
i j be the selected edge s&,» be the number of connected

Although inclusion of any edge in sét increases the entropy components in the graph, anth be the distribution of the
rate, this increase is larger when selecting edges that fogfister membership. For instance, let the graph partitipni

compact and homogeneous clusters, as shown in Figure 2for the edge sefA be Sx = fS;;S;;::;;Sy, 9. Then the
distribution ofZ is equal to
1. The total incident weight to a vertex remains unchangadesan edge iSij
weight contributes to the total incident weight to a vertéke¥ via a non-loop iy = 12 Caee .
edge or a self-loop. Pz, (1) f1:5Nag; (16)

Vi’
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@) Balancing Function =-1.00 (b) Balancing Function = -Llﬁ has a large entropy. It largely captures the maximum entropy
principle.

4 OPTIMIZATION AND IMPLEMENTATION

We present a greedy heuristic for optimizing the proposed
objective function. Its optimality, ef cient implemeniah, and

K j complexity are discussed. We also introduce a method to

automatically determine the balancing weight parameter

Fig. 4. We show the role of the balancing function in
obtaining clusters of similar sizes. The connected compo-
nents show the different clusters. The balancing function 4.1 Greedy Heuristic
has a higher objective value for the balanced clustering in

. One standard approach for maximizing a submodular function
(a) compared to the less balanced one in (b). bp g

is through a greedy algorithm [44]. The algorithm startshwit
an empty set (a fully disconnected graph, = ) and
sequentially adds edges to the set. At each iteration, & Hukl

and the balancing term is given by edge that yields the largest gain. The iterations are textaih

B(A) HS(ZA) N A when the nEmber of connected subgraphs reaches a preset
) _ number,Na = K.
= Pz, (1)10g(pz, (1)) Na: (17) " In order to achieve an additional speedup, we put a con-

‘ straint on the edge seA, which forces thalA cannot include

The entropyH (Z4), favors clusters with similar sizes, while@ny cycle. This constraint immediately ignores the edges
the cluster number tern 5, is minimized by grouping data that are within a connected subgraph and greatly reduces
points. In Figure 4, we show an example of the preferentige number of evaluations required at each iteration of the
where a more balanced partitioning is preferred for a xe@ireedy search. Notice that the ignored edges do not change
number of clusters. the partitioning of the graph. Although the constraint eéal
Similar to the entropy rate, the balancing function is alsd Smaller solution space (only tree-structured subgrapés a
a monotonically increasing and submodular function agdtatllowed), the clustering results are similar in practice.
in the following lemma: The cycle-free constraint in conjunction with the cluster
Lemma 2: The balancing functio : 26 ! R is a mono- number constraintNa K, leads to an independent set
tonically increasing submodular function under the prepbs de nition, which induces a matroiM = (E; ). We establish
graph construction. this in the following lemma:
The proof is given in the supplementary material. Lemma 3:Let E be the edge set, and letbe the set of
The objective function combines the entropy rate and tf/PSetsA  E, which satis es: 1.)A is cycle-free and 2.)
balancing function and, therefore, favors compact, hom@- constitutes a graph partition with more than or equal to
geneous, and balanced clusters. Clustering is achieved Kiaconnected components. Then the pilir = (E; 1) is a

optimizing the objective function with respect to the edge s matroid. S _
The proof is given in the supplementary material.

max F(A) With the cycle-free constraint, the graph partition proble
(18)  pecomes a problem of maximizing a submodular function

subjectto Na K subject to a matroid constraint, given by

where F(A) = H(A) + B(A) is the objective function.

The parameter, 0, is the weight of the balancing term. /rpaé F(A) (19)
Linear combination with nonnegative coef cients presarve subjectto A 21 :

submodularity and monotonicity [44], therefore the oljext

function is also submodular and monotonically increasiige  The associated greedy algorithm for solving (19) is similar

additional constraint on the number of connected subgragRsthe standard one except that it only considers the edges

enforces exactlyk clusters since the objective function isipon whose addition to the current solution set will satisfy

monotonically increasing. the independent set constraint. A pseudocode of the dhgorit
The proposed formulation is closely related to the prirecipiS given in Algorithm 1.

of maximum entropy, which says that the probability distri- Maximization of a submodular function subject to a matroid

bution that best represents our knowledge of the underlyifgnstraint is an active subject in combinatorial optinitat

problem is the one with the largest entropy. This distributi research. It is shown in Fisher et al. [47] that the greedy

makes the minimal assumption of the problem and is ti@gorithm gives a3 approximation bound for maximizing

least biased one [1]. Our objective function encourages@amonotonically increasing submodular function. Follogvin

graph partition such that the random walk in the graph hike same argument, we achieve the sag@gproximation)

a large entropy rate and the cluster membership distributiéuarantee, which is stated in the following theorem:
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Algorithm 1: Pseudocode of the greedy algorithm. The  Although the worst case complexity of the lazy greedy

objective functionis denedaf H + B. algorithm is O(jVj?logjVj), in practice the algorithm runs
Data G =(ViE),w:E! R, K, and much faster than the naive implementation. On average, very
Result A few updates are performed on the heap at each iteration,
A ,U E and hence the complexity of the algorithm approximates
repeat O(jVjlogjVj). In our superpixel segmentation experiments,
it provides a speedup by a factor of 200—300 for image size
a arg max F(ALT a9 F (A) 481x321 and on average requires 2.5 seconds.
azu We present a method to automatically adjust the balancing
if A[f ag2! then weight, . Given an initial user-specied value,’, the nal
LA A[fag balancing parameter, is adjusted based on: 1.) the number of
U U f ag clustersK , and 2.) the data dependent dynamic parameter,

e The cluster numbek , emphasizes balancing term more when

a large number of clusters is required. The data dependent
term is computed from the input data. It is given by the
Theorem 1:Let Aoy be an optimal solution for Prob- ratio of the maximal entropy rate increase and the maximal

lem (19), and letAgreeqy be a solution obtained by applyingbalancing term intha(as?#pgn including a single edge irgo th
maxei;j €

Algorithm 1. Then the inequality, graph = maxe B(e; ) B () This choice has the effect
F(Agreety) F () 1 of corr.1pensatir?g'jJ the magr_1itude difference be.tween the two
F(Ao) F () E; (20) terms in the objective function. The nal balancing paraemet
opt is givenby = K ©
holds true
I\h[e‘wg]J.roof follows immediately by applying Theorem 2.]5 EXPERIMENTS

Theorem 1 shows that the difference between the object\¥¢ conducted extensive experiments on clustering and su-
value of the greedy solution and that of the empty set is withPerpixel segmentation to evaluate the proposed algorithm.

1 of the difference between the optimal solution and the emptjiroughout the experiments we useti= 0:5 to determine
set. the balancing weight.

4.2 Ef cient Implementation 5.1 Clustering

In each iteration, the greedy algorithm selects the edge tif¥e conducted clustering experiments using both standard
yields the largest gain in the objective function subjectite datasets and challenging vision datasets. They include the
matroid constraint. A naive implementation of the algarith i°nosphere, letters, satellite, digits, breast canceiss, wine,
loopsO(JEj) times to add a new edge info. At each loop, it glass, and movement libras datasets from the UCI repository
scans through the edge list to locate the edge with the targk the preprocessing step, the samples were normalized to
gain; therefore the complexity of the algorithm G(jEj2).2 have a zero mean and unit variance for each feature di-
Since each vertex in our graph is connected to a constdgnsion. To measure the distance between the samples, we
number of few neighbors, the complexity of the algorithn'ﬁ'sed the Euclidean distance. Two vision datasets were also
is O(jVj?). In the following, we show that by exploiting theused for performance evaluation: the natural scene regogni
submodularity of the objective function we can achieve agnoflataset [48] and MPEG-7 shape database (MPEG-7) [49].
ef cient implementation, which is called lazy greedy [4]. The natural scene d_ataset contains |mages_from eght_@.hﬁer
Initially, we compute the gain of adding each edgétand nature scenes ranging from coast, forest, highway, insigle c

construct a max heap structure. At each iteration, the edte wnountain, open country, street, to tall building. Some @ th
the maximum gain is popped from the heap and included iages are shown in Figure 5. This dataset is very challgngin
A. The inclusion of this edge affects the gains of some gpages of the same scene are usually very different due to
the remaining edges in the heap: therefore, the heap nekf various !ocfamons and ‘seasons under which they_w_ere
to be updated. However, the submodular property allows §aPtUred, while images of different scenes can be very aimil

ef cient update of the heap structure. The key observation §U€ 1 the common spatial layout. In order to measure the
that, throughout the algorithm, the gain for each edge caemePairwise similarity, we used GIST descriptors [48], thetipa
increase due to the diminishing return property. Therefitre envelope of the image. We used the Euclidean distance in the

is suf cient to keep a heap structure where only the gain ef tff>!ST descriptor space as the distance measure. The MPEG-
top element is updated but not necessarily the others. Sirfcdatasets contains 1400 shapes evenly distributed among 70
the top element of the heap is updated and the values for Bfyect classes. Some of the shapes are shown in Figure 6.

other elements can only decrease, the top element always R@1Ples in the dataset exhibit great intra-class variation
the maximum value. including deformation and articulation. We applied theenn

distance shape context (IDSC) algorithm [50] to compensate
2. An edge gain can be computed in constant time. the intra-class variations.
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The proposed algorithm requires pairwise similarity ssor(%:I teri ; TABLE 1 - clusteri
as inputs. We use a Gaussian kernel givenwdy;;v;) = ustering performance comparison: clustering accuracy.

)2 X
e_xp_( d(vzlivz')) to convert the at_’OVe d|sta_nc_e measures (0 Dataset Proposed] NCut | AP | K-means| CPMMC
similarity scores whered(vi;v;) is the pairwise distance lonosphere 9259 | 83.19 | 70.94| 70.00 75.48
between samples andj and is the kernel bandwidth. Letters 9445 | 9428 91.83] 9338 | 9502
We then construct a neighbor graph where each sample—is Satellite 9951 | 9750 5230} 94.10 %8.79

: ghbor graph v ) PI&Sbigits 0689 98.24 | 91.83| 90.31| 78.46 96.74
connected to it80 nearest neighbors prior to clustering. Digits 1279 95.97 | 91.70 | 8551 | 89.32 94.52
In the experiments we set the number of clusters equal toBfeﬁlslt_C<’=mCers gi-gg gg-g? gg-gg gé-gg nja
: H rns . . . . n/a
the true numbeK for all _the algorithms. For cqmpanso_n, w Wine 9663 T 98319352 9663 A
use two standard clustering performance metrics: 1.)efung} Glass 5093 | 55.14 | 4019 | 4533 na
accuracy and 2.) Rand index. Movement Libras|  53.06 | 50.83 | 46.94 | 44.44 n/a
Clusteri CA) i | i cati Natural Scenes 47.36 56.36 | 43.64 47.70 n/a
Clustering accuracy (. ) is a classi cation-accuracy —vpec7 Shapes| 74.00 | 71.64 | 69.14 e 7
like performance metric. Le€ = fCq;Cy;:i1; Ck g be
the ground truth distributions of clusters wheggis the TABLE 2
set of indices for samples in théh cluster. Similarly let Clustering performance comparison: rand index.
S = 15;;S,;:::; Sk g be the computed cluster distribu-
tion with S; denoting the index set of samples assigngd _ Dataset Proposed| NCut | AP | K-means| CPMMC
heith cl r. Th I rin r i iven lonosphere 0.86 0.72 | 0.59 0.58 0.65
to theith cluste e clustering accuracy is given by i 500 I L B o7
1 X _ Satellite 0.99 0.95 | 053 0.89 0.97
CA=max — jCi\ Sy(j (21) Digits 0689 0.98 0.93 [ 0.92| 087 0.97
Jon . Digits 1279 0.96 092 [ 0.87| 0.90 0.96
Breast Cancers 0.87 0.85 | 0.88 0.84 n/a
wheren is the total number of samples in the dataset and Iris 0.93 086 [ 0.85] 0.83 nfa
J represents any possible permutation of the sequerjce__ Wine 096 | 098 |092] 0.9 n/a
f1;2;:::;Kg. Equation (21) requires searching for the Class 0.73 0.70 | 066 | 0.70 n/a
R N (2. q _ g & Movement Libras| 0.92 | 0.92 | 0.91 | 0.91 n/a
best permutation which is solved using the Hungarign Natural Scenes 0.82 0.84 | 0.81 0.83 n/a
algorithm. MPEG-7 Shapes| 0.99 0.99 | 0.99 n/a n/a
Rand index (RI) is a measure of similarity between
two clusterings: the ground truth and estimated. T& TABLE 3

be the number of sample pairs that are in the samglustering pe_rformancg comparison: performgnce rank
cluster for both ground truth and estimated clusterings, averages in clustering accuracy and rand index.
TN be the number of sample pairs that are in different :
. . Algorithm | Proposed| NCut | AP | K-means| CPMMC
clusters for the ground truth and estimated clusterings, CA 15 55 1381 37 50
FP be the number of sample pairs that are in different RI 1.4 21 | 36 3.6 1.8
clusters for the ground truth clustering but are in the
same cluster for the estimated clustering, &tidl be the
number of sample pairs that are in the same cluster favailable in MATLAB. Both the NCut algorithm and the pro-
the ground truth clustering but are in different clusters fgosed algorithm have a kernel bandwidth parameter. Faligwi
the estimated clustering output. In other wor@i®, TN, the setup in [52], we exhaustively searched a range of the
FP, andFN correspond to the counts of true positiveparameter values and report the best performance obtained f
true negative, false positive, and false negative sammeach of the algorithm. Speci cally, we computed the minimum
pairs respectively. The Rand index is given by percentagistance and the maximum distance for all the sample pairs
of agreed cluster assignment prior to clustering. The kernel bandwidth values were then
varied from20% of the minimum distance to the maximum
TP+ TN - . . . .
= TP+ TN+ EP+EN : (22) distance I|_nearly |r124_Osteps. We used the implementation of
NCut available provided in [17]. The performance numbers
We compare our results with state-of-the-art clusteriggal of the CPMMC algorithm were duplicated from a recent
rithms including AP [51], K-means, NCut [17], and the cudtin paper [52]. The results for clustering accuracy and ranéxnd
plane maximum margin clustering algorithm (CPMMC) [52]are shown in Table 1 and Table 2 respectively.
They represent a variety of clustering methods from example From Tables 1 and 2, we see that the proposed algo-
based, centroid-based, graph-theoretic, to maximum margiithm produces slightly better performances in clusteritig
based methods. For AP the number of clusters is implicithutperforms the competing algorithms in 7 out of the 12
controlled by the preference parameter; a binary searchen tlatasets according to the clustering accuracy measurelsd/e a
parameter value is performed for obtaining the output witlichieve better performance according to Rand index: better
the desired number of clusters. We used the implementation8 out of the 12 datasets. For the two challenging vision
available from the author's website. The K-means algorithm datasets, all the algorithms did not perform well. This is
sensitive to initialization. We initialized the K-meangatithm mainly due to the insuf ciency of the descriptors in modelin
with 100 different con gurations using the implementatiorthe intra-class and inter-class variations of the datadWes

RI
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Fig. 5. Example images from the natural scene recognition dataset [48]. From left to right, the image classes are
coast, forest, highway, inside city, mountain, open country, street, and tall building. The images of the same class
exhibit great variation due to different imaging conditions such as locations and seasons.

COOP HxkxMRAR a&%?m@ma

apple device elephant octopus
Fig. 6. Example silhouettes from the MPEG-7 shape dataset [49]. The dataset contains 70 different shape classes
and each class have 20 instances in various deformation and articulation. We show four instances for each of the

apple, device, elephant, ray, and octopus classes.
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Fig. 7. We show the intermediate results of dichotomizing a dataset consisting of 5 Gaussian clouds. After the rst
few iterations, we recover the 5 Gaussian clouds in different clusters in (a). The subsequent combinations results in 4,
3, and 2 clusters as shown in (b), (c), and (d) respectively.

TABLE 4

obtained a better clustering accuracy for the MPEG-7 shape . . . .
Comparison to agglomerative clustering algorithms.

dataset while our results are inferior to NCut in the natural

scene clustering task. We summarize the performances using

. . : Dataset Proposed| Single | Complete | Average
their average performance ranks in Table 3. The proposed lonosphere 9259 | 64.39 67.04 64.39
algorithm has an average performance rank of 1.5 and 1.4 Letters 94.45 | 9447 | 61.86 94.02
for clustering accuracy and Rand index, which outperforms Satelite 9951 | 6860 9262 | 9445
he oth Ig th y P Digits 0689 9824 | 2527 | 25.27 25.27
the other algorithms. _ Digits 1279 9597 | 2549 | 2544 | 2544

The proposed algorithm can be viewed as an agglomer-[ Breast Cancers | 92.97 | 63.09 | 63.09 63.27
ative clustering algorithm, which iteratively groups sdegp V'\;'S gg-gg gg-gg ;g-gz gg-%

H H . Ine . . . .
to form a hlera_rchlcal structu_re. In the_ ne_xt e_xperlme_n'g, we Giass t093 | 3645 | 40.65 3785
demonstrate this agglomerative behavior in dichotomizng Movement Libras|  53.06 | 10.83 | 43.61 30.17

dataset consisting of 5 Gaussian clouds as shown Figure 7.

One can see that it rst discovers the 5 Gaussian clouds in

Figure 7(a) and subsequently combines proximate ones until

the number of remaining clusters equal to two as shovior identifying the internal structure of dataset and st@ien
in Figure 7(b)(c)(d). The agglomerative property is usefwlisualization.
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We further compare the proposed algorithm to other ag- We use S and Gto denote the union sets of superpixel

glomerative clustering algorithms including single-lage, boundaries and ground truth boundaries respectively. The
complete-linkage, and average-linkage methods on the UCI indicator functionl checks if the nearest pixel is within
datasets. Speci cally, we rst construct the hierarchichls- distance. In our experiments we set 2.

tering tree using these methods with the pairwise dissiityila Achievable segmentation accuracy (ASA)s a perfor-

given by the Euclidean distance. We then nd the horizontal mance upperbound measure. It gives the highest accuracy
cut through the tree that gives a desired number of clusters f  achievable for object segmentation that utilizes superpix
output. The performance comparison is shown in Table 4. One els as units. To compute ASA we label each superpixel
can see that the proposed algorithm consistently outpagor with the label of the ground truth segment that has the
the other agglomerative clustering methods. This is bexaus largest overlap. The fraction of correctly labeled pixals i

in addition to the compactness criterion common in agglom- the achievable accuracy,

erative clustering the proposed algorithm also encourdges P ) )
formation of homogeneous and balanced clusters. ASAG(S) = — kM8 IS\ Gij, (26)
i jGij
5.2 Superpixel Segmentation These performance metrics are plotted against the number of

We conducted experiments for superpixel segmentatiorgusuperpixels in an image. Algorithms producing better per-
the Berkeley segmentation benchmark [53]. The benchmdgmances with a smaller number of superpixels are more
contains300grey images with human-labeled ground truths. lpreferable.

order to compute the pairwise similarity between neightopri  In the rst experiment, we compared our results with

pixels, we adopt the function FH [32], GraphCut superpixel [36], Turbopixels [35] and NCu
. o superpixel [6] methods using the three evaluation metrics.
(kp  gkajl (p) I (9))) : - o
exp( 5 ) (23) The results were obtained by averaging over all 308 gray
_ 2_ _ _ images in the dataset.
where p and g are pixel coordinateskp ok is their L Figure 8(a) shows the undersegmentation error curves. The

distance, andl(p) 1(g)j is the absolute value of theircurves for the other methods are duplicated from the origina
intensity difference. The kernel bandwidth is set te= 5:0 paper [36]. The proposed algorithm outperforms the stéte-o
throughout the superpixel segmentation experiments. the-art at all the superpixel counts where the error rate is
Superpixel segmentation has a different goal than objeelduced by more thafi0% It achieves an undersegmentation

segmentation, and therefore the performance metrics aoe arror of0:13 with 350superpixels while the same performance
different. We computed three standard metrics which are-copg achieved with550 superpixels using GraphCut superpixel
monly used for evaluating the quality of superpixels: usegr segmentation [36]. Witts50 superpixels, our undersegmenta-
mentation error [35][36], boundary recall [6] and achideabtion error is0:086.
segmentation accuracy [54]. For the sake of completeness wen Figure 8(b), we plot the boundary recall curves. Again,
rst describe these metrics. We u§e= fG1;Gz;::5Gn 10 the curves for the other methods are duplicated from the orig
represent a ground truth segmentation with segments and jna| paper [36]. The proposed algorithm reduces the missed
iGij denotes the segment size. boundaries by more tha&80% compared to the state-of-the-art

Undersegmentation error (UE) measures the fraction at all the superpixel counts. The recall rates of the present

of pixel leak across ground truth boundaries. It evaluategyorithm are82% and 92% with 200 and 600 superpixels

the quality of segmentation based on the requirement thaspectively. The recall rates with the same superpixehtsou

a superpixel should overlap with only one object. Ware 76 and 86 percents with FH.

utilize the undersegmentation error metric used in Veksler |n Figure 8(c), we plot the achievable segmentation acgurac

et al. [36], curves. In this experiment we generated the curves for the
P ) P csnos 1Sk i other methods using the original implementations avalabl
UEg(S) = — S Gi (24) online. The proposed algorithm yields a better achievable

11Gi] segmentation upper-bound at all the superpixel counts—
For each ground truth segmest we nd the overlapping particularly for smaller number of superpixels. The ASA is
superpixelsSk's and compute the size of the pixel leak®5% with 100 superpixels where the same accuracy can only
Sk Gij's. We then sum the pixel Ieakq:,over all thebe achieved witi200 superpixels for the other algorithms.
segments and normalize it by the image sizejGij. In the second experiment, we evaluated the segmentation
Boundary recall (BR) measures the percentage of theesults visually. Several examples are shown in Figure 9
natural boundaries recovered by the superpixel bounghere the images are partitioned into 100 superpixels. For
aries. We compute BR using better visualization, the ground truth segments are coboied
02 l(Ming skp ck< ) and blended on the images, and thg superpi_xel bpundaries
— i (25) recovered by the algorithm are superimposed in white color.
] G It is dif cult to notice pixel leaks and the superpixels teta
which is the ratio of ground truth boundaries that haveivide an image into similar-sized regions which are imaott
a nearest superpixel boundary within apixel distance. for region based feature descriptors.

BRg(S) =
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Fig. 8. Performance metrics: (a) undersegmentation error, (b) boundary recall, and (c) achievable segmentation
accuracy curves. The proposed algorithm performs signi ca ntly better in all the metrics at all the superpixel counts.
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Fig. 9. Superpixel segmentation examples. The images contain 100 superpixels. The ground truth segments are
color-coded and blended on the images. The superpixels (boundaries shown in white) respect object boundaries and
tend to divide an image into similar-sized regions.

Fig. 10. Nonphotorealistic rendering using superpixels. The images are divided into 150 superpixels and each pixel
is colored by the average color of the superpixel it belongs to. The balanced-size objective renders an artistic effect
capturing the style of thick application of paintbrush common in post-impressionism.

In the third experiment, we evaluated the effectivenesk®ft In Figure 11 we plot the distributions on superpixel size.
proposed algorithm for nonphotorealistic rendering. &&ve We applied the proposed algorithm to segment the benchmark
examples are shown in Figure 10 which are computed by rghages with different numbers of superpixel counts, namely
dividing the images into 150 superpixels and coloring ea@®0, 400, and 600. The superpixels computed using the same
pixel by the average color of the superpixel it belongs t@ount are pooled to obtain the size distribution for the ¢oun
Though one might argue that similar effects can be achievehe can see that these distributions, though of differemitsy
by other image smoothing techniques, the proposed algaritiall have a similar bell shape. Most of the superpixel sizes ar
renders similar-sized segments and the smoothing effgct calose to the average size. The superpixels with very small
tures the style of thick application of paintbrush — a stylspatial supports or very large spatial support are rare.
popular in post-impressionism.

In the last experiment, we analyze the effects of the bal-
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Fig. 11. Superpixel size distribution. We plot the distributions on superpixel sizes obtained by segmenting the image
into (a) 200 superpixels (b) 400 superpixels and (c) 600 superpixels. Each of the distributions has a bell shape. The
proposed algorithm divides the images into similar-sized regions and avoids producing superpixels with very small or

large spatial support.
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ancing term, ° and the kernel bandwidth,, parameters on selection of the parameter.

the quality of segmentation. We observe that competitige se The proposed algorithm is among the fastest superpixel
mentation results are achieved with a wide range of paramesegmentation algorithms and takes an averag&®fseconds

to segment an image on the Berkeley benchmd&i( 321

In Figure 12, we plot the performance curves for a rang#xels) on an Intel Core 2 Duo E8400 processor. Compared

selection.

of 9 values for a xed

= 5:0. We observed that smallerto the state-of-the-art methods, it is faster than the Graph

Oresults in better boundary recall rates especially for kmalsuperpixel [36] 6:4 seconds), turbopixel [35]L5 seconds),
superpixel counts, while the results are largely invariamt and NCut 6 minutes), whereas it is slower than FH [32F
this parameter for larger superpixel counts. We further oeconds).
served that better performances on undersegmentation erro

and achievable segmentation accuracy are achieved with, a
larger ©.In general, there is a tradeoff among different metric

Su

MMARY

based on the © parameter, and empirically we found thaive presented a novel objective function for cluster analysi
0= 0:5 yields a good compromise among these metrics. |t is a combination of the entropy rate of a random walk
In Figure 13, we plot the performance curves for a rangm the data graph and a balancing criterion. The property of

of

values for a xed °= 0:5. We observed that a largethis objective function and its optimization were analy2at

range of values results in comparable performances, namedfilowed that, by exploiting its submodularity and a matroid
from 0:5 to 5. The superpixels are largely insensitive to thetructure, a simple greedy algorithm can ef ciently congput
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a performance-guaranteed solution. We have achievedfsig[Eo] D. Yan, L. Huang, and M. I. Jordan, “Fast approximate céyat

icant performance improvements for superpixel segmemtati
tasks and competitive results compared to the state-eéithe
clustering algorithms on standard datasets.

We plan to explore user-speci ed constraints in the cluster ! : _ o
22] M. Meila and J. Shi, “A random walks view of spectral segntation,” in

ing problem. Another interesting research direction isttamlg

[21]

clustering,” inThe ACM SIGKDD Conference on Knowledge Discovery
and Data Mining 2009, pp. 907-916.

R. Krauthgamer, J. Naor, and R. Schwartz, “Partitigngraphs in to
balanced components,” im Proceedings of ACM-SIAM Symposium on
Discrete Algorithms2009.

IEEE Interntaional Conference on Arti cial Intelligencend Statistics

hyper-graph clustering where edges are de ned over a set of 2001.

vertices.
Acknowledgement:We thank David W. Jacobs, Jay Thornton

(23]

D. Harel and Y. Koren, “On clustering using random wélka Foun-
dations of Software Technology and Theoretical Comput&mge vol.
2245. Springer-Verlag, 2001, pp. 18-41.

Yuichi Taguchi, Yan Chen, and K.J. Ray Liu for their valuablg4] L. Yen, D. Vanvyve, F. Wouters, F. Fouss, M. Verleysemd &1. Saerens,
discussions and suggestions. The research was conducted Clustering using a random-walk based distance measunell iPro-
at MERL with support from MERL. Prof. Chellappa wasps)
supported by MURI from the Of ce of Naval Research under

the Grant NO0O014-10-1-0934.

REFERENCES
(1]
[2]
(3]

E. T. Jaynes, “Information theory and statistical metbg,” Physical
Review vol. 106, no. 4, pp. 620-630, 1957.

L. Lovasz, “Submodular functions and convexityylathematical Pro-
gramming - State of the Arpp. 235-257, 1983.

C. Guestrin, A. Krause, and A. P. Singh, “Near-optimahs® place-
ments in gaussian processes: Theory, ef cient algorithnts empirical
studies,”Journal of Machine Learning Researachp. 235-284, 2008.

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, JBvisen, and
N. Glance, “Cost-effective outbreak detection in netwgrks The ACM
SIGKDD Conference on Knowledge Discovery and Data MinR@p7,
pp. 420-429.

H. Lin and J. Bilmes, “Word alignment via submodular nmaiiation

(4]

(5]

[26]

[27]

(28]

[29]

[30]

[31]

over matroids,” inThe 49th Annual Meeting of the Association for Com-

putational Linguistics: Human Language Technologies -rERapers
2011, pp. 170-175.

X. Ren and J. Malik, “Learning a classi cation model faegmentation,”
in Proceeding of IEEE International Conference on Computesiovi
2003.

G. Mori, X. Ren, A. A. Efros, and J. Malik, “Recovering ham body
con gurations: Combining segmentation and recognition,Proceeding
of IEEE Conference on Computer Vision and Pattern Recagmifi004.
P. Kohli, L. Ladicky, and P. Torr, “Robust higher ordertpntials for
enforcing label consistencyihternational Journal on Computer Visipn
vol. 82, pp. 302-324, 2009.

D. Hoiem, A. N. Stein, A. A. Efros, and M. Hebert, “Recoirgg
occlusion boundaries from a single image,” Rroceeding of IEEE
International Conference on Computer Visi®007.

S. Ramalingam, P. Kohli, K. Alahari, and P. H. S. Torrx&€t inference
in multi-label crfs with higher order cliques,” ifProceeding of IEEE
Conference on Computer Vision and Pattern RecognitRfi08.

A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering review,”
ACM Computing Surveysol. 31, no. 3, pp. 264-323, 1999.

P. Berkhin, “Survey of clustering data mining techregy Tech. Rep.,
2002.

R. Xu and I. Wunsch, D., “Survey of clustering algoritejh Neural
Networks, IEEE Transactions pwol. 16, no. 3, pp. 645 —678, May
2005.

M. Filippone, F. Camastra, F. Masulli, and S. Rovetta, survey of
kernel and spectral methods for clusteringAttern Recogn.vol. 41,
pp. 176-190, January 2008.

C. T. Zahn, “Graph-theoretical methods for detectingl alescribing
gestalt clusters,IEEE Transactions on Computersol. 20, no. 1, pp.
68-86, 1971.

Z. Wu and R. Leahy, “An optimal graph theoretic approdaohdata
clustering: Theory and its application to image segmemtdtilEEE
Transactions on Pattern Analysis and Machine Intelligeneel. 15,
no. 11, pp. 1101-1113, 1993.

J. Shi and J. Malik, “Normalized cuts and image segntentd IEEE
Transactions on Pattern Analysis and Machine Intelligeneel. 22,
no. 8, pp. 888-905, 2000.

N. Bansal, A. Blum, and S. Chawla, “Correlation clusigy” Machine
Learning vol. 56, no. 1-3, pp. 89-113, 2004.

A. Ng, M. Jordan, and Y. Weiss, “On spectral clusteridgnalysis and

(6]

[7]

(8]

9]

[10]

[11]
[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

an algorithm,” inThe Neural Information Processing Systems (NIPS)

Foundation MIT Press, 2001, pp. 849-856.

ceedings European Symposium on Arti cial Neural Netwp2@05.

L. Grady, “Random walks for image segmentatiolEEE Transactions
on Pattern Analysis and Machine Intelligena®l. 28, no. 11, pp. 1768—
1783, 2006.

A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, ‘&&ring with
bregman divergencesJournal of Machine Learning Researctol. 6,
pp. 1705-1749, 2005.

A. C. Muller, S. Nowozin, and C. H. Lampert, “Informati theoretic
clustering using minimum spanning trees,” PAGM/OAGM Sympo-
sium 2012, pp. 205-215.

M. Narasimhan, N. Jojic, and J. Bilmes, “Q-clusterinig, The Neural
Information Processing Systems (NIPS) FoundatiovlIT Press, 2006,
pp. 979-986.

K. Nagano, Y. Kawahara, and S. Iwata, “Minimum averagstcluster-
ing,” in The Neural Information Processing Systems (NIPS) Fouodati
2010.

S. Jegelka and J. Bilmes, “Submodularity beyond subr@wcenergies:
Coupling edges in graph cuts,” iRroceeding of IEEE Conference on
Computer Vision and Pattern Recognitja2011.

Y. Boykov and V. Kolmogorov, “An experimental compauis of min-
cut/max- ow algorithms for energy minimization in visidn,|EEE
Transactions on Pattern Analysis and Machine Intelligeneel. 26,
no. 9, pp. 1124-1137, 2004.

P. F. Felzenszwalb and D. P. Huttenlocher, “Ef cienagh-based image
segmentation,International Journal on Computer Visiprol. 59, no. 2,
pp. 167-181, 2004.

D. Comaniciu and P. Meer, “Mean shift: A robust approaoward
feature space analysis|EEE Transactions on Pattern Analysis and
Machine Intelligencevol. 24, no. 5, pp. 603—-619, 2002.

L. Vincent and P. Soille, “Watersheds in digital spaces ef cient
algorithm based on immersion simulationdEEE Transactions on
Pattern Analysis and Machine Intelligenceol. 13, no. 6, pp. 583 —
598, 1991.

A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. FleethdaS. J.
Dickinson, “Fast superpixels using geometric owHZEE Transactions
on Pattern Analysis and Machine Intelligena®l. 31, no. 12, pp. 2290-
2297, 2009.

O. Veksler and Y. Boykov, “Superpixels and supervoxelsan energy
optimization framework,” inProceeding of European Conference on
Computer Vision2010.

Y. Boykov, O. Veksler, and R. Zabih, “Ef cient approxiae energy
minimization via graph cut,IEEE Transactions on Pattern Analysis
and Machine Intelligencevol. 20, no. 12, pp. 1222-1239, 2001.

A. P. Moore, S. J. D. Prince, J. Warrell, U. Mohammed, &dJones,
“Superpixel lattices,” inProceeding of IEEE Conference on Computer
Vision and Pattern Recognitior2008.

A. P. Moore, S. J. D. Prince, and J. Warrell, “"latticet’ta constructing
superpixels using layer constraints,” Rroceeding of IEEE Conference
on Computer Vision and Pattern Recognitid@2010.

Y. Taguchi, B. Wilburn, and C. L. Zitnick, “Stereo recstnuction with
mixed pixels using adaptive over-segmentation,Pioceeding of IEEE
Conference on Computer Vision and Pattern RecognitRfi08.

M. Bleyer, C. Rother, P. Kohli, D. Scharstein, and S.Hain“Object
stereo — joint stereo matching and object segmentatiorPrateeding
of IEEE Conference on Computer Vision and Pattern Recagnif011.
M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa,nti®py
rate superpixel segmentation,” roceeding of IEEE Conference on
Computer Vision and Pattern Recognitjc2011.

T. M. Cover and J. A. Thomaglements of Information Theqrgnd ed.
John Wiley, 1991.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An arsify of the
approximations for maximizing submodular set functionddthemati-
cal Programming pp. 265-294, 1978.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

[45]
[46]

J. Oxley,Matroid Theory Oxford University Press, 1992.

M. A. Carreira-Perpifian and R. S. Zemel, “Proximity graplws f
clustering and manifold learning,” ifihe Neural Information Processing
Systems (NIPS) FoundationMIT Press, 2004, pp. 225-232.

M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, “An arsfy of
the approximations for maximizing submodular set fundionii,”
Mathematical Programmingpp. 73-87, 1978.

A. Oliva and A. Torralba, “Modeling the shape of the seemA
holistic representation of the spatial envelopmternational Journal
on Computer Visionvol. 42, no. 3, pp. 145-175, 2001.

S. Jeannin and M. Bober, “Description of core experitaefor

[47]

(48]

[49]

14

Srikumar Ramalingam Srikumar Ramalingam
is a Principal Research Scientist at Mitsubishi
Electric Research Lab (MERL). He received
his B.E from Anna University in India and his
M.S from University of California (Santa Cruz)
in USA. He received a Marie Curie Fellowship
from European Union to pursue his studies at
INRIA Rhone Alpes (France) and he obtained
his PhD in 2007. His thesis on generic imaging
models received INPG best thesis prize and
AFRIF thesis prize (honorable mention) from the

mpeg-7 motion/shape Technical Report ISO/IEC JTC 1/SC29/WG 11French Association for Pattern Recognition. He has published more than

MPEG99/N2690, MPEG;71999.

[50] H. Ling and D. W. Jacobs, “Shape classication using timmer-

30 papers in agship conferences such as CVPR, ICCV and ECCV.
He has coauthored books, given tutorials and organized workshops

distance,”|IEEE Transactions on Pattern Analysis and Machine Intelon topics such as multi-view geometry and discrete optimization. His

ligence vol. 29, no. 2, pp. 286-299, 2007.

B. J. Frey and D. Dueck, “Clustering by passing messagéseen data
points,” Science vol. 315, no. 5814, pp. 972-976, 2007.

F. Wang, B. Zhao, and C. Zhang, “Linear time maximum nrarg
clustering,” IEEE Transactions on Neural Networkgol. 21, no. 2, pp.
319-332, 2010.

D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A databasé lmman
segmented natural images and its application to evaluatggnentation
algorithms and measuring ecological statistics,Pimceeding of IEEE
International Conference on Computer Visj&001.

S. Nowozin, P. Gehler, and C. Lampert, “On parametemieg in crf-
based approaches to object class image segmentatioRfbaeeding of
European Conference on Computer Visi@910.

[51]

[52]

(53]

[54]

Ming-Yu Liu Ming-Yu Liu received the B.E. de-
gree from the National Chiao Tung University,
Taiwan, in 2003 and the M.S. and Ph.D. degrees
in Electrical Engineering from the University of
Maryland College Park, Maryland, USA, in 2010
and 2012 respectively. He is a research staff
at Mitsubishi Electric Research Labs (MERL),
Cambridge, Massachusetts, USA. His research
interests are in computer vision, machine learn-
ing, and robotics. He is a member of the IEEE.

Oncel Tuzel Oncel Tuzel received the BS and
the MS degrees in computer engineering from
the Middle East Technical University, Ankara,
Turkey, in 1999 and 2002, and PhD degree in
computer science from the Rutgers University,
Piscataway, New Jersey, in 2008. He is a princi-
pal member of research staff at Mitsubishi Elec-
tric Research Labs (MERL), Cambridge, Mas-
sachusetts. His research interests are in com-
puter vision, machine learning, and robotics. He
coauthored more than 30 technical publications,
and has applied for more than 20 patents. He was on the program
committee of several international conferences such as CVPR, ICCV,
and ECCV. He received the best paper runner-up award at the IEEE
Computer Vision and Pattern Recognition Conference in 2007. He is a
member of the |IEEE.

research interests are in computer vision, machine learning and robotics
problems.

Rama Chellappa Prof. Rama Chellappa re-
ceived the B.E. (Hons.) degree from the Univer-
sity of Madras, India and the M.E. degree with
Distinction from the Indian Institute of Science,
Bangalore in 1975 and 1977 respectively. He re-
ceived the M.S.E.E. and Ph.D. Degrees in Elec-
trical Engineering from Purdue University, West
Lafayette, IN in 1978 and 1981 respectively.
During 1981-1991, he was a faculty member in
the department of EE-Systems at University of
Southern California (USC). Since 1991, he has
been a Professor of Electrical and Computer Engineering (ECE) and
an af liate Professor of Computer Science at University of M aryland
(UMD), College Park. He is also af liated with the Center for Automation
Research and the Institute for Advanced Computer Studies (Permanent
Member) and is serving as the Chair of the ECE department. In 2005,
he was named a Minta Martin Professor of Engineering. His current
research interests span many areas in image processing, computer
vision and pattern recognition. Prof. Chellappa has received several
awards including an NSF Presidential Young Investigator Award and
four IBM Faculty Development Awards. He received the K.S. Fu Prize
and two paper awards from the International Association of Pattern
Recognition (IAPR). He is a recipient of the Society, Technical Achieve-
ment and Meritorious Service Awards from the IEEE Signal Processing
Society. He also received the Technical Achievement and Meritorious
Service Awards from the IEEE Computer Society. He is a recipient of the
Excellence in teaching award from the School of Engineering at USC. At
UMD, he received college and university level recognitions for research,
teaching, innovation and mentoring undergraduate students. In 2010,
he was recognized as an Outstanding ECE by Purdue University. Prof.
Chellappa served as the Editor-in-Chief of IEEE Transactions on Pattern
Analysis and Machine Intelligence and as the General and Technical
Program Chair/Co-Chair for several IEEE international and national
conferences and workshops. He is a Golden Core Member of the IEEE
Computer Society, served as a Distinguished Lecturer of the IEEE
Signal Processing Society and as the President of IEEE Biometrics
Council. He is a Fellow of IEEE, IAPR, OSA and AAAS and holds four
patents



