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Abstract —We propose a new objective function for clustering. This objective function consists of two components: the entropy rate of
a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the
balancing function encourages clusters with similar sizes and penalizes larger clusters that aggressively group samples. We present a
novel graph construction for the graph associated with the data and show that this construction induces a matroid— a combinatorial
structure that generalizes the concept of linear independence in vector spaces. The clustering result is given by the graph topology that
maximizes the objective function under the matroid constraint. By exploiting the submodular and monotonic properties of the objective
function, we develop an ef�cient greedy algorithm. Further more, we prove an approximation bound of 1

2 for the optimality of the greedy
solution. We validate the proposed algorithm on various benchmarks and show its competitive performances with respect to popular
clustering algorithms. We further apply it for the task of superpixel segmentation. Experiments on the Berkeley segmentation dataset
reveal its superior performances over the state-of-the-art superpixel segmentation algorithms in all the standard evaluation metrics.

Index Terms —clustering, superpixel segmentation, graph theory, information theory, submodular function, discrete optimization
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1 INTRODUCTION

CLUSTERING is a fundamental task in many domains
such as machine learning, computer vision, marketing,

and biology. In almost every scienti�c �eld dealing with
empirical data, researchers attempt to get a �rst impression
on their data by identifying groups of similar characteristics.
Several clustering methods have been proposed in different
communities, and many of them have promising performances.
However, they are usually based on different assumptions, and
it is dif�cult to compare one criterion to another. Furthermore,
most desirable criteria lead to NP-hard problems. Thus, further
progress in clustering hinges on the careful design of new ob-
jective functions applicable to existing or newer problemswith
provable theoretical guarantees and promising performance on
standard datasets. This is precisely the goal of this paper.

Among a wide variety of clustering algorithms, some com-
pute clusters using a single objective function, some obtain
clusters recursively using intermediate cost functions, and a
few others identify clusters based on a particular projection
(subspace, manifold) of data points. This work belongs to
the �rst class. We formulate the clustering problem as a
graph topology selection problem where data points and their
pairwise relations are respectively mapped to the verticesand
edges in a graph. Clustering is then solved via �nding a graph
topology maximizing the objective function.

Various objective functions have been proposed to measure
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the quality of a given cluster. However, the notion of a 'good'
cluster is problem dependent. Quite often it is possible to
generate an example for which a given objective function
fails. In this work, we are interested in obtaining compact,
homogeneous, and balanced clusters. In a compact cluster, data
points are close to each other. In a homogeneous cluster data
points share similar inter-element properties. The notionof
balanced clusters refers to avoiding large clusters that aggres-
sively group samples. In order to obtain clusters with these
qualities, we propose a novel objective function consisting of
two components: 1.) the entropy rate of a random walk on
a graph and 2.) a balancing term on the cluster distribution.
The entropy rate favors compact and homogeneous clusters
whereas the balancing term encourages clusters with similar
sizes. They are motivated by the principle of maximum
entropy [1]: we seek a graph topology such that the resulting
random walk and cluster membership distribution yield a large
uncertainty.

Our formulation leads to an algorithm with a provable bound
on the optimality of the solution. We show that our objective
function is a monotonically increasing submodular function.
Submodularity appears in many real world applications such
as facility location, circuit design, and set covering. It can be
related to convexity through the Lovász extension while also
sharing some similarities to concavity [2]. Knowing whether
a function is submodular enables us to better understand
the underlying optimization problem. In general, maximiza-
tion of submodular functions leads to NP-hard problems,
for which the global optimum solution is dif�cult to obtain.
Nevertheless, by using a greedy algorithm and exploiting
the matroid structure in our problem formulation, we obtain
a bound of 1

2 on the optimality of the solution. Recently,



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

maximization of submodular functions with various constraints
has been applied in several real word problem domains: sensor
placement [3] (subject to a cardinality constraint), outbreak
detection in networks [4] (subject to a modular cost constraint),
and word alignment [5] (subject to a matroid constraint).

We evaluate the proposed algorithm using standard datasets
in the UCI repository and compare it to the state-of-the-art
clustering algorithms. In addition, we study a particular clus-
tering problem in computer vision — the superpixel segmen-
tation problem [6]. Superpixel segmentation is a processing
which divides an image into disjoint and perceptually uni-
form regions, termed superpixels. A superpixel representation
greatly reduces the number of primitives in an image and
provides coherent spatial support for feature computations. It
has become a common preprocessing step for many advanced
vision algorithms [7][8][9][10]. The desired properties of a
superpixel segmentation algorithm depend on the application
of interest. We list some of the desired properties below:

� Every superpixel should overlap with only one object.
� The set of superpixel boundaries should be a superset of

object boundaries.
� The mapping from pixels to superpixels should not reduce

the achievable performance of the intended application.
� The above properties should be obtained with as few

superpixels as possible.
We show that the proposed objective function possesses
these required properties. Speci�cally, the entropy rate favors
compact and homogeneous clusters—encouraging division of
images on perceptual boundaries, whereas the balancing term
encourages superpixels with similar sizes—avoiding largesu-
perpixels straddling multiple objects.

1.1 Related Work

There is a large body of work in clustering. Below we only
review a few related works and refer the interested reader to
survey papers such as [11], [12], [13], [14].

1.1.1 Graph-theoretic approaches
Graph-theoretic clustering methods are preferred when only
the pairwise relations of data are available. Some represen-
tative works in this category include [15], [16], [17], [18].
In [15], clustering is achieved by partitioning a minimal
spanning tree into disjoint sets. It �rst constructs a minimal
spanning tree from data graph and then sequentially deletes
edges whose similarity score are signi�cantly smaller thanthe
neighboring edges. The edge deletion process uses a single
threshold and does not accommodate intra-cluster variation.
The proposed algorithm also forms disjoint sets via spanning
trees, but the formation is attained through maximizing a
submodular function de�ned on the graph topology.

Wu and Leahy [16] propose using the min-cut algorithm to
iteratively bisecting the graph. The min-cut cost can be solved
optimally within each iteration. Nevertheless it prefers dividing
a small set of isolated vertices and is vulnerable to outliers.
This drawback is elegantly handled in a seminal paper on nor-
malized cut (NCut) [17] using a normalization term favoring
balanced clusters. NCut is related to spectral clustering[19].

While NCut is effective, computing an NCut solution re-
quires eigen-decomposition, which is computationally intense
for large-scale problems [20]. We formulate clustering as a
graph topology optimization problem and propose an objective
function favoring the formation of compact, homogeneous, and
balanced clusters. The resulting algorithm is ef�cient andcan
be easily applied to large datasets.

Correlation clustering [18] seeks a clustering output that
maximizes both the number of similar edges within clusters
and the number of dissimilar edges between clusters. In some
sense, the entropy rate function encourages a similar objective;
however, the balancing function further promotes the forma-
tion of clusters having a similar size. Our problem formulation
is related to theK -balanced partitioning problem [21] where
a graph is partitioned inK connected components and the
number of elements in each component is about the same.
Our balancing function imposes a soft constraint for obtaining
clusters of similar sizes.

1.1.2 Random walk modeling
Meil�a and Shi [22] discuss the link between the NCut objective
function and a random walk model. They show that solving the
NCut partition is equivalent to �nding the low conductivityset
in a random walk. Harel and Koren [23] propose a separation
operator based on the escape probability in a random walk, to
sharpen the distinction between intra-cluster links and inter-
cluster links. The operator is applied repeatedly until thegraph
is divided into several disconnected components.

Yen et al. [24] propose a similarity measure for clustering,
which is based on the average passing time between two
states in a random walk. Computing this metric requires
solving the pseudo inverse of the graph Laplacian matrix.
Leo [25] presents an interactive image segmentation algorithm
based on random walk modeling. With user-speci�ed labels on
some pixels, it computes the probabilities that a random walk
reaches these labeled pixels starting from an unlabeled pixel.
The unlabeled pixel is then assigned the label with the largest
probability.

1.1.3 Information-theoretic approaches
Banerjee et al. [26] propose a K-means like clustering algo-
rithm based on mutual information. The length of minimal
spanning trees is used as an estimator of mutual information
in a clustering formation in [27]. Our clustering objective
function is also derived using information theory where the
entropy rate and entropy are used to measured the randomness
in a random process and random variable respectively.

1.1.4 Submodular objective functions
Narasimhan et al. [28] present two submodular clustering
objective functions. The �rst one is based on the minimal
distance between the elements of different clusters; whereas
the second is related to the description length of the clusters.
Nagano et al. [29] use an objective function based on minimum
average cost. Clustering with these objective functions leads
to submodular function minimization problems and can be
solved optimally in polynomial time. Our formulation leads
to a constrained submodular maximization problem, which is
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more dif�cult. Recently, Jegelka and Bilmes [30] propose a
submodular cost function for image segmentation called the
cooperative graph cut. It gives bias to cutting edges exhibiting
cooperative patterns. To solve the cooperative cut problem,
they derive a bounding function and show that the st-cut
algorithm [31] can be used to iteratively minimize the bounds
to produce the desired graph partitioning.

1.1.5 Superpixel segmentation

Graph-based image segmentation work of Felzenszwalb and
Huttenlocher (FH) [32], mean shift [33], and watershed [34]
are three most popular superpixel segmentation algorithms. FH
and watershed are fast; mean shift is robust to local variations.
However, they tend to produce superpixels with irregular sizes
and shapes, which sometimes straddle multiple objects as
pointed out in [35], [36].

Ren and Malik [6] propose using NCut for superpixel
segmentation. NCut has the nice property of producing su-
perpixels with similar sizes and compact shapes which are
preferred for some vision algorithms [6], [7]. One drawback
of NCut is its computational requirement—it takes several
minutes for segmenting an image of moderate (481x321) size.
Levinshtein et al. [35] propose the TurboPixel algorithm asan
ef�cient alternative. TurboPixel is based on evolving boundary
curves from seeds uniformly placed in the image. Recently
Veksler et al. [36] pose the superpixel segmentation problem as
a GraphCut [37] problem. The regularity is enforced through
a dense patch assignment technique for allowable pixel labels.

These methods produce nice image tessellations. Never-
theless, they tend to sacri�ce �ner image details owing to
their preference for smooth boundaries. This is re�ected in
the low boundary recall reported in [35], [36]. In contrast,our
balancing objective, which regularizes the cluster sizes,avoids
the over-smoothing problem and hence better preserves object
boundaries.

Moore et al. [38], [39] propose an alternative approach for
obtaining superpixels aligned with a grid. In [38], a greedy
algorithm is used to sequentially cut images along some
vertical and horizontal strips; whereas in [39], the problem
is solved using a GraphCut algorithm [37].

Superpixel segmentation can also be jointly solved with
stereo matching. Taguchi et al. [40] propose an EM-like
iterative procedure to jointly estimate scene depth and seg-
mentation using various cues. Bleyer et al. [41] pose the joint
estimation problem in an energy minimization framework.

1.2 Contributions

The main contributions of this paper are listed below:
� We pose the clustering problem as a maximization prob-

lem on a graph and present a novel objective function on
the graph topology. This function consists of an entropy
rate term and a balancing term for obtaining clusters with
desired properties.

� We prove that the entropy rate and the balancing function
are monotonically increasing and submodular.

� By embedding our problem in a matroid structure and
using the properties of the objective function, we present

an ef�cient greedy algorithm with an approximation
bound of 1

2 .
� We evaluate the proposed algorithm for clustering using

standard datasets and show that it renders improved
performances in various clustering performance metrics.

� We show that the proposed algorithm signi�cantly out-
perform many state-of-the-art superpixel segmentation
algorithms in the standard performance metrics on the
Berkeley segmentation benchmark— a reduced underseg-
mentation error up to50%, a reduced boundary miss rate
up to 40%, and a tighter bound on achievable segmen-
tation accuracy. In addition, the proposed algorithm is
ef�cient— takes only about 2.5 seconds to segment an
image of size 481x321.

The paper is organized as follows. The notations and
background discussions are given in Section 2. We present the
objective function in Section 3 and discuss its optimization in
Section 4. Extensive experimental validations are provided in
Section 5. We conclude and discuss some promising future
research directions in Section 6. A preliminary version of this
work appeared as a superpixel segmentation study in [42]. In
this paper, we extend it for the general clustering problem and
provide additional experimental validation.

2 PRELIMINARIES

In this section, we introduce the mathematical preliminar-
ies, including graph notations, random walk models, and
information-theoretic metrics. They are used for formulating
the clustering objective function. We also discuss submodu-
larity, monotonicity, and matroid concepts that are used for
analyzing the properties of the objective function and the
optimality of the optimization procedure.

Graph representation: We use G = ( V; E) to denote
an undirected graph whereV is the vertex set andE is
the edge set. The vertices and edges are denoted byvi and
ei;j respectively. The similarity between vertices is given by
the nonnegative weight functionw : E ! R+ [ f 0g. In
an undirected graph, the edge weights are symmetric, i.e.
wi;j = wj;i .

Graph partition: A graph partitionS refers to a division
of the vertex setV into disjoint subsetsS = f S1; S2; :::; SK g
such thatSi \ Sj = � for i 6= j and

S
i Si = V . We pose

the graph partition problem as a subset selection problem. Our
goal is to select a subset of edgesA 2 E such that the resulting
graph(V; A) consists ofK connected components/subgraphs.

Entropy: The uncertainty of a random variable is measured
by entropyH . The entropy of a discrete random variable,X ,
with a probability mass function,pX , is de�ned by

H (X ) = �
X

x 2X

pX (x) log pX (x) (1)

where X is the support ofX . The conditional entropy,
H (X jY), quanti�es the remaining uncertainty inX given that
the value of a dependent random variable,Y , is known. It is
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de�ned as

H (X jY) =
X

y2Y

pY (y)H (X jY = y)

= �
X

y2Y

pY (y)
X

x 2X

pX jY (xjy) log pX jY (xjy)
(2)

where Y is the support ofY and pX jY is the conditional
probability mass function.

Entropy rate: The entropy rate quanti�es the uncertainty
of a stochastic processXXX = f X t jt 2 Tg whereT is some
index set. For a discrete random process, the entropy rate is
de�ned as an asymptotic measure

H(XXX ) = lim
t !1

H (X t jX t � 1; X t � 2; :::; X 1); (3)

which measures the remaining uncertainty of the random
process after observing the past trajectory. For a stationary
stochastic process, the limit in (3) always exists. In the case
of a stationary1st-order Markov process, the entropy rate has
a simple form

H(XXX ) = lim
t !1

H (X t jX t � 1)

= lim
t !1

H (X 2jX 1) = H (X 2jX 1): (4)

The �rst equality is due to the1st-order Markov property
whereas the second equality is a consequence of stationarity.
For more details, one can refer to [43, pp.77].

Random walks on graphs:Let XXX = f X t jt 2 T; X t 2 V g
be a random walk on the graphG = ( V; E) with a nonnegative
similarity measurew. We use a random walk model described
in [43, pp.78]— the transition probability is de�ned as

pi;j = P r(X t +1 = vj jX t = vi ) =
wi;j

wi
(5)

wherewi =
P

k :ei;k 2 E wi;k is the sum of incident weights of
the vertexvi , and the stationary distribution is given by

��� = ( � 1; � 2; :::; � jV j )
T = (

w1

wT
;

w2

wT
; :::;

wjV j

wT
)T (6)

where wT =
P jV j

i =1 wi is the normalization constant. For a
disconnected graph, the stationary distribution is not unique.
However,��� in (6) is always a stationary distribution. It can
be easily veri�ed through��� = PT ��� whereP = [ p]i;j is the
transition matrix. The entropy rate of the random walk can be
computed by applying (2)

H(XXX ) = H (X 2jX 1) =
X

i

� i H (X 2jX 1 = vi )

= �
X

i

X

j

wi;j

wT
log

wi;j

wT
+

X

i

wi

wT
log

wi

wT
(7)

Submodularity: Let E be a �nite set. A set function,F :
2E ! R, is submodular if

F (A [ f a1g) � F (A) � F (A [ f a1; a2g) � F (A [ f a2g) (8)

or, equivalently,

�F a1 (A) � �F a1 (A [ f a2g (9)

for all A � E anda1; a2 2 E n A where

�F a1 (A) � F (A [ f a1g) � F (A) (10)

wi,i wj,j

ei,j selected ei,j unselected

wi,i  !w i,i+wi,j wj,j  !w j,j+wi,j

wi,j wi,j 0

Fig. 1. Illustration of the graph construction. If an edge
ei;j is unselected in cluster formation, its weight is redis-
tributed to the loops of the two vertices.

is the marginal gain obtained by adding the elementa1 to the
setA. This property is also referred as the diminishing return
property, which says that the gain of a module is less if it is
included in a later stage [44].

Monotonically increasing set function: A set functionF
is monotonically increasing ifF (A) � F (A [ f a1g) for all
A � E . We sometimes refer this property as monotonicity in
the paper.

Matroid: A matroid is an ordered pairM = ( E; I )
consisting of a �nite setE and a collectionI of subsets ofE
satisfying the following three conditions:

1) ; 2 I .
2) If I 2 I andI 0 � I , thenI 0 2 I .
3) If I 1 and I 2 are in I and jI 1j < jI 2 j, then there is an

elemente of I 2 � I 1 such thatI 1 [ e 2 I .
The members ofI are the independent sets ofM . Note that
there exist several other de�nitions for matroids which are
equivalent. For more details, one can refer to [45, pp.7� 15].

Later in the paper we prove that our objective function is
monotonically increasing and submodular.

3 PROBLEM FORMULATION

We pose clustering as a graph partitioning problem. To parti-
tion the graph intoK clusters, we search for a graph topology
that hasK connected subgraphs and maximizes the proposed
objective function.

3.1 Graph Construction

We map a dataset to a graphG = ( V; E) with vertices denoting
the data points and the edge weights denoting the pairwise
similarities given in the form of a similarity matrix. Thereare
many ways for generating such a mapping. Some examples
include the fully-connected graph, a local �xed-grid graph,
or a nearest-neighbor graph. The proper choice of the graph
structure is itself an important problem in clustering [46];
however, it is not the focus of the paper. We simply map
a dataset into ak-nearest neighbor graph for clustering. For
superpixel segmentation, we exploit the image grid structure
and use a 8-connected graph.

Our goal is to partition the graph into disjoint components.
It is achieved by selecting a subset of edgesA � E such that
the resulting graph,G = ( V; A), contains exactlyK connected
subgraphs. In addition, we also assume that every vertex of
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(c) Entropy Rate = 0.64 (d) Entropy Rate = 0.61

4 4

44
3 6

25

(a) Entropy Rate = 0.81 (b) Entropy Rate = 0.43

3 3
33

5
5

5
5

Fig. 2. We show the role of entropy rate in obtaining
compact and homogeneous clusters. We use a Gaussian
kernel to convert the distances, the numbers next to the
edges, to similarities. Each of these clustering outputs
contains six different clusters shown as connected com-
ponents. As described in Section 3, every vertex has a
loop which is not shown. The entropy rate of the compact
cluster in (a) has a higher objective value than that of
the less compact one in (b). The entropy rate of the
homogeneous cluster in (c) has a higher objective value
than that of the less homogeneous one in (d).

the graph has a self-loop. Although the self-loops do not affect
graph partitioning, they are necessary for the proposed random
walk model. When an edge is not included inA, we increase
the edge weight of the self-loop of the associated vertices
in such a way that the total incident weight for each vertex
remains constant (See Figure 1).

3.2 Entropy Rate

We use the entropy rate of the random walk on the constructed
graph as a criterion to obtain compact and homogeneous
clusters. The proposed construction leaves the stationarydis-
tribution of the random walk (6) unchanged1 where the set
functions for the transition probabilitiespi;j : 2E ! R are
given below:

pi;j (A) =

8
><

>:

w i;j

w i
if i 6= j and ei;j 2 A;

0 if i 6= j and ei;j =2 A;

1 �
P

j : e i;j 2 A w i;j

w i
if i = j:

(11)
Consequently, the entropy rate of the random walk onG =
(V; A) can be written as a set function:

H (A) = �
X

i

� i

X

j

pi;j (A) log(pi;j (A)) (12)

Although inclusion of any edge in setA increases the entropy
rate, this increase is larger when selecting edges that form
compact and homogeneous clusters, as shown in Figure 2.

1. The total incident weight to a vertex remains unchanged since an edge
weight contributes to the total incident weight to a vertex either via a non-loop
edge or a self-loop.

v1

v2

v3

p(v1jv1) = 3
5

p(v2 jv2) = 0

p(v3jv3) = 3
4

p(v2jv1) = 2
5

p(v1jv2) = 2
3

p(v3jv2) = 1
3

p(v2jv3) = 1
4

Fig. 3. Illustration of the transition probabilities given
selecting edges e1;2 and e2;3.

We illustrate the computation of the entropy rate under
the proposed graph construction using the following example
which is also shown in Figure 3. Given a graph with three
verticesf v1; v2; v3g and the input similarity matrix

W =

0

@
� 2:0 3:0
2:0 � 1:0
3:0 1:0 �

1

A (13)

the task is to compute the entropy rate,H (f e1;2 [ e2;3g); i.e.
the entropy rate of the random walk when selecting the edges
e1;2 and e2;3 as shown in Figure 3. From (6) the stationary
distribution of the random walk is equal to

��� = (
5
12

;
3
12

;
4
12

)T ; (14)

and the transition matrix takes the following form

P =

0

@
3
5

2
5 0

2
3 0 1

3
0 1

4
3
4

1

A : (15)

The entropy rate is then equal toH(f e1;2 [ e2;3g) = 0 :905.
We establish the following result on the entropy rate of the

random walk model.
Lemma 1:The entropy rate of the random walk on the

graphH : 2E ! R is a monotonically increasing submodular
function under the proposed graph construction.

It is easy to see that the entropy rate is monotonically
increasing, since the inclusion of any edge increases the
uncertainty of a jump of the random walk. The diminishing
return property comes from the fact that the increase in
uncertainty from selecting an edge is less in a later stage
because it is shared with more edges. The proof is given in
the supplementary material.

3.3 Balancing Function

We utilize a balancing function, which encourages grouping
of data points into clusters that have similar sizes. LetA
be the selected edge set,NA be the number of connected
components in the graph, andZA be the distribution of the
cluster membership. For instance, let the graph partitioning
for the edge setA be SA = f S1; S2; :::; SN A g. Then the
distribution ofZA is equal to

pZ A (i ) =
jSi j
jV j

; i = f 1; :::; NA g; (16)
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(a) Balancing Function = -1.00 (b) Balancing Function = -1.19

Fig. 4. We show the role of the balancing function in
obtaining clusters of similar sizes. The connected compo-
nents show the different clusters. The balancing function
has a higher objective value for the balanced clustering in
(a) compared to the less balanced one in (b).

and the balancing term is given by

B(A) � H (ZA ) � NA

= �
X

i

pZ A (i ) log(pZ A (i )) � NA : (17)

The entropy,H (ZA ), favors clusters with similar sizes, while
the cluster number term,NA , is minimized by grouping data
points. In Figure 4, we show an example of the preference
where a more balanced partitioning is preferred for a �xed
number of clusters.

Similar to the entropy rate, the balancing function is also
a monotonically increasing and submodular function as stated
in the following lemma:

Lemma 2:The balancing functionB : 2E ! R is a mono-
tonically increasing submodular function under the proposed
graph construction.
The proof is given in the supplementary material.

The objective function combines the entropy rate and the
balancing function and, therefore, favors compact, homo-
geneous, and balanced clusters. Clustering is achieved via
optimizing the objective function with respect to the edge set:

max
A � E

F (A)

subject to NA � K;
(18)

where F (A) = H(A) + � B(A) is the objective function.
The parameter,� � 0, is the weight of the balancing term.
Linear combination with nonnegative coef�cients preserves
submodularity and monotonicity [44], therefore the objective
function is also submodular and monotonically increasing.The
additional constraint on the number of connected subgraphs
enforces exactlyK clusters since the objective function is
monotonically increasing.

The proposed formulation is closely related to the principle
of maximum entropy, which says that the probability distri-
bution that best represents our knowledge of the underlying
problem is the one with the largest entropy. This distribution
makes the minimal assumption of the problem and is the
least biased one [1]. Our objective function encourages a
graph partition such that the random walk in the graph has
a large entropy rate and the cluster membership distribution

has a large entropy. It largely captures the maximum entropy
principle.

4 OPTIMIZATION AND IMPLEMENTATION

We present a greedy heuristic for optimizing the proposed
objective function. Its optimality, ef�cient implementation, and
complexity are discussed. We also introduce a method to
automatically determine the balancing weight parameter� .

4.1 Greedy Heuristic

One standard approach for maximizing a submodular function
is through a greedy algorithm [44]. The algorithm starts with
an empty set (a fully disconnected graph,A = � ) and
sequentially adds edges to the set. At each iteration, it adds the
edge that yields the largest gain. The iterations are terminated
when the number of connected subgraphs reaches a preset
number,NA = K .

In order to achieve an additional speedup, we put a con-
straint on the edge set,A, which forces thatA cannot include
any cycle. This constraint immediately ignores the edges
that are within a connected subgraph and greatly reduces
the number of evaluations required at each iteration of the
greedy search. Notice that the ignored edges do not change
the partitioning of the graph. Although the constraint leads to
a smaller solution space (only tree-structured subgraphs are
allowed), the clustering results are similar in practice.

The cycle-free constraint in conjunction with the cluster
number constraint,NA � K , leads to an independent set
de�nition, which induces a matroidM = ( E; I ). We establish
this in the following lemma:

Lemma 3:Let E be the edge set, and letI be the set of
subsets,A � E , which satis�es: 1.)A is cycle-free and 2.)
A constitutes a graph partition with more than or equal to
K connected components. Then the pairM = ( E; I ) is a
matroid.
The proof is given in the supplementary material.

With the cycle-free constraint, the graph partition problem
becomes a problem of maximizing a submodular function
subject to a matroid constraint, given by

max
A � E

F (A)

subject to A 2 I :
(19)

The associated greedy algorithm for solving (19) is similar
to the standard one except that it only considers the edges
upon whose addition to the current solution set will satisfy
the independent set constraint. A pseudocode of the algorithm
is given in Algorithm 1.

Maximization of a submodular function subject to a matroid
constraint is an active subject in combinatorial optimization
research. It is shown in Fisher et al. [47] that the greedy
algorithm gives a 1

2 approximation bound for maximizing
a monotonically increasing submodular function. Following
the same argument, we achieve the same (1

2 approximation)
guarantee, which is stated in the following theorem:
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Algorithm 1: Pseudocode of the greedy algorithm. The
objective function is de�ned asF � H + � B.

Data: G = ( V; E), w : E ! R+ , K , and�
Result: A
A  � , U  E
repeat

â  arg max F (A [ f ag) � F (A)

a 2 U

if A [ f âg 2 I then
A  A [ f âg

U  U � f âg
until U = �

Theorem 1:Let Aopt be an optimal solution for Prob-
lem (19), and letAgreedy be a solution obtained by applying
Algorithm 1. Then the inequality,

F (Agreedy ) � F (�)
F (Aopt ) � F (�)

�
1
2

; (20)

holds true
The proof follows immediately by applying Theorem 2.1
in [47].

Theorem 1 shows that the difference between the objective
value of the greedy solution and that of the empty set is within
1
2 of the difference between the optimal solution and the empty
set.

4.2 Ef�cient Implementation

In each iteration, the greedy algorithm selects the edge that
yields the largest gain in the objective function subject tothe
matroid constraint. A naive implementation of the algorithm
loopsO(jE j) times to add a new edge intoA. At each loop, it
scans through the edge list to locate the edge with the largest
gain; therefore the complexity of the algorithm isO(jE j2).2

Since each vertex in our graph is connected to a constant
number of few neighbors, the complexity of the algorithm
is O(jV j2). In the following, we show that by exploiting the
submodularity of the objective function we can achieve a more
ef�cient implementation, which is called lazy greedy [4].

Initially, we compute the gain of adding each edge toA and
construct a max heap structure. At each iteration, the edge with
the maximum gain is popped from the heap and included to
A. The inclusion of this edge affects the gains of some of
the remaining edges in the heap; therefore, the heap needs
to be updated. However, the submodular property allows an
ef�cient update of the heap structure. The key observation is
that, throughout the algorithm, the gain for each edge can never
increase due to the diminishing return property. Therefore, it
is suf�cient to keep a heap structure where only the gain of the
top element is updated but not necessarily the others. Since
the top element of the heap is updated and the values for the
other elements can only decrease, the top element always has
the maximum value.

2. An edge gain can be computed in constant time.

Although the worst case complexity of the lazy greedy
algorithm is O(jV j2 log jV j), in practice the algorithm runs
much faster than the naive implementation. On average, very
few updates are performed on the heap at each iteration,
and hence the complexity of the algorithm approximates
O(jV j log jV j). In our superpixel segmentation experiments,
it provides a speedup by a factor of 200–300 for image size
481x321 and on average requires 2.5 seconds.

We present a method to automatically adjust the balancing
weight, � . Given an initial user-speci�ed value,� 0, the �nal
balancing parameter,� , is adjusted based on: 1.) the number of
clusters,K , and 2.) the data dependent dynamic parameter,� .
The cluster number,K , emphasizes balancing term more when
a large number of clusters is required. The data dependent
term is computed from the input data. It is given by the
ratio of the maximal entropy rate increase and the maximal
balancing term increase upon including a single edge into the
graph � =

max e i;j H (ei;j ) �H (�)

max e i;j B(ei;j ) �B (�) : This choice has the effect
of compensating the magnitude difference between the two
terms in the objective function. The �nal balancing parameter
is given by� = �K� 0.

5 EXPERIMENTS

We conducted extensive experiments on clustering and su-
perpixel segmentation to evaluate the proposed algorithm.
Throughout the experiments we used� 0 = 0 :5 to determine
the balancing weight.

5.1 Clustering

We conducted clustering experiments using both standard
datasets and challenging vision datasets. They include the
ionosphere, letters, satellite, digits, breast cancers, iris, wine,
glass, and movement libras datasets from the UCI repository.
In the preprocessing step, the samples were normalized to
have a zero mean and unit variance for each feature di-
mension. To measure the distance between the samples, we
used the Euclidean distance. Two vision datasets were also
used for performance evaluation: the natural scene recognition
dataset [48] and MPEG-7 shape database (MPEG-7) [49].
The natural scene dataset contains images from eight different
nature scenes ranging from coast, forest, highway, inside city,
mountain, open country, street, to tall building. Some of the
images are shown in Figure 5. This dataset is very challenging:
images of the same scene are usually very different due to
the various locations and seasons under which they were
captured, while images of different scenes can be very similar
due to the common spatial layout. In order to measure the
pairwise similarity, we used GIST descriptors [48], the spatial
envelope of the image. We used the Euclidean distance in the
GIST descriptor space as the distance measure. The MPEG-
7 datasets contains 1400 shapes evenly distributed among 70
object classes. Some of the shapes are shown in Figure 6.
Samples in the dataset exhibit great intra-class variations
including deformation and articulation. We applied the inner
distance shape context (IDSC) algorithm [50] to compensate
the intra-class variations.
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The proposed algorithm requires pairwise similarity scores
as inputs. We use a Gaussian kernel given byw(vi ; vj ) =
exp(� d(v i ;v j )2

2� 2 ) to convert the above distance measures to
similarity scores whered(vi ; vj ) is the pairwise distance
between samplesi and j and � is the kernel bandwidth.
We then construct a neighbor graph where each sample is
connected to its30 nearest neighbors prior to clustering.

In the experiments we set the number of clusters equal to
the true numberK for all the algorithms. For comparison, we
use two standard clustering performance metrics: 1.) clustering
accuracy and 2.) Rand index.

� Clustering accuracy (CA) is a classi�cation-accuracy
like performance metric. LetC = f C1; C2; :::; CK g be
the ground truth distributions of clusters whereCi is the
set of indices for samples in thei th cluster. Similarly let
S = f S1; S2; :::; SK g be the computed cluster distribu-
tion with Si denoting the index set of samples assigned
to the i th cluster. The clustering accuracy is given by

CA = max
J

1
n

X

i

jCi \ SJ ( i ) j (21)

wheren is the total number of samples in the dataset and
J represents any possible permutation of the sequence
f 1; 2; :::; K g. Equation (21) requires searching for the
best permutation which is solved using the Hungarian
algorithm.

� Rand index (RI) is a measure of similarity between
two clusterings: the ground truth and estimated. LetT P
be the number of sample pairs that are in the same
cluster for both ground truth and estimated clusterings,
T N be the number of sample pairs that are in different
clusters for the ground truth and estimated clusterings,
F P be the number of sample pairs that are in different
clusters for the ground truth clustering but are in the
same cluster for the estimated clustering, andF N be the
number of sample pairs that are in the same cluster for
the ground truth clustering but are in different clusters for
the estimated clustering output. In other words,T P, T N ,
F P , andF N correspond to the counts of true positive,
true negative, false positive, and false negative sample
pairs respectively. The Rand index is given by percentage
of agreed cluster assignment

RI =
T P + T N

T P + T N + F P + F N
: (22)

We compare our results with state-of-the-art clustering algo-
rithms including AP [51], K-means, NCut [17], and the cutting
plane maximum margin clustering algorithm (CPMMC) [52].
They represent a variety of clustering methods from example-
based, centroid-based, graph-theoretic, to maximum margin-
based methods. For AP the number of clusters is implicitly
controlled by the preference parameter; a binary search on the
parameter value is performed for obtaining the output with
the desired number of clusters. We used the implementation
available from the author's website. The K-means algorithmis
sensitive to initialization. We initialized the K-means algorithm
with 100 different con�gurations using the implementation

TABLE 1
Clustering performance comparison: clustering accuracy.

Dataset Proposed NCut AP K-means CPMMC
Ionosphere 92.59 83.19 70.94 70.00 75.48

Letters 94.45 94.28 91.83 93.38 95.02
Satellite 99.51 97.50 62.30 94.10 98.79

Digits 0689 98.24 91.83 90.31 78.46 96.74
Digits 1279 95.97 91.70 85.51 89.32 94.52

Breast Cancers 92.97 92.09 93.32 91.04 n/a
Iris 94.00 86.67 86.00 83.33 n/a

Wine 96.63 98.31 93.82 96.63 n/a
Glass 50.93 55.14 40.19 45.33 n/a

Movement Libras 53.06 50.83 46.94 44.44 n/a
Natural Scenes 47.36 56.36 43.64 47.70 n/a

MPEG-7 Shapes 74.00 71.64 69.14 n/a n/a

TABLE 2
Clustering performance comparison: rand index.

Dataset Proposed NCut AP K-means CPMMC
Ionosphere 0.86 0.72 0.59 0.58 0.65

Letters 0.90 0.89 0.85 0.88 0.92
Satellite 0.99 0.95 0.53 0.89 0.97

Digits 0689 0.98 0.93 0.92 0.87 0.97
Digits 1279 0.96 0.92 0.87 0.90 0.96

Breast Cancers 0.87 0.85 0.88 0.84 n/a
Iris 0.93 0.86 0.85 0.83 n/a

Wine 0.96 0.98 0.92 0.95 n/a
Glass 0.73 0.70 0.66 0.70 n/a

Movement Libras 0.92 0.92 0.91 0.91 n/a
Natural Scenes 0.82 0.84 0.81 0.83 n/a

MPEG-7 Shapes 0.99 0.99 0.99 n/a n/a

TABLE 3
Clustering performance comparison: performance rank

averages in clustering accuracy and rand index.

Algorithm Proposed NCut AP K-means CPMMC
CA 1.5 2.2 3.8 3.7 2.0
RI 1.4 2.1 3.6 3.6 1.8

available in MATLAB. Both the NCut algorithm and the pro-
posed algorithm have a kernel bandwidth parameter. Following
the setup in [52], we exhaustively searched a range of the
parameter values and report the best performance obtained for
each of the algorithm. Speci�cally, we computed the minimum
distance and the maximum distance for all the sample pairs
prior to clustering. The kernel bandwidth values were then
varied from20% of the minimum distance to the maximum
distance linearly in240 steps. We used the implementation of
NCut available provided in [17]. The performance numbers
of the CPMMC algorithm were duplicated from a recent
paper [52]. The results for clustering accuracy and rand index
are shown in Table 1 and Table 2 respectively.

From Tables 1 and 2, we see that the proposed algo-
rithm produces slightly better performances in clustering. It
outperforms the competing algorithms in 7 out of the 12
datasets according to the clustering accuracy measure. We also
achieve better performance according to Rand index: better
in 8 out of the 12 datasets. For the two challenging vision
datasets, all the algorithms did not perform well. This is
mainly due to the insuf�ciency of the descriptors in modeling
the intra-class and inter-class variations of the datasets. We
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Fig. 5. Example images from the natural scene recognition dataset [48]. From left to right, the image classes are
coast, forest, highway, inside city, mountain, open country, street, and tall building. The images of the same class
exhibit great variation due to different imaging conditions such as locations and seasons.

apple device elephant ray octopus

Fig. 6. Example silhouettes from the MPEG-7 shape dataset [49]. The dataset contains 70 different shape classes
and each class have 20 instances in various deformation and articulation. We show four instances for each of the
apple, device, elephant, ray, and octopus classes.
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Fig. 7. We show the intermediate results of dichotomizing a dataset consisting of 5 Gaussian clouds. After the �rst
few iterations, we recover the 5 Gaussian clouds in different clusters in (a). The subsequent combinations results in 4,
3, and 2 clusters as shown in (b), (c), and (d) respectively.

obtained a better clustering accuracy for the MPEG-7 shape
dataset while our results are inferior to NCut in the natural
scene clustering task. We summarize the performances using
their average performance ranks in Table 3. The proposed
algorithm has an average performance rank of 1.5 and 1.4
for clustering accuracy and Rand index, which outperforms
the other algorithms.

The proposed algorithm can be viewed as an agglomer-
ative clustering algorithm, which iteratively groups samples
to form a hierarchical structure. In the next experiment, we
demonstrate this agglomerative behavior in dichotomizinga
dataset consisting of 5 Gaussian clouds as shown Figure 7.
One can see that it �rst discovers the 5 Gaussian clouds in
Figure 7(a) and subsequently combines proximate ones until
the number of remaining clusters equal to two as shown
in Figure 7(b)(c)(d). The agglomerative property is useful

TABLE 4
Comparison to agglomerative clustering algorithms.

Dataset Proposed Single Complete Average
Ionosphere 92.59 64.39 67.24 64.39

Letters 94.45 94.47 61.86 94.02
Satellite 99.51 68.60 92.62 94.45

Digits 0689 98.24 25.27 25.27 25.27
Digits 1279 95.97 25.49 25.44 25.44

Breast Cancers 92.97 63.09 63.09 63.27
Iris 94.00 66.00 78.67 68.67

Wine 96.63 37.64 83.71 38.76
Glass 50.93 36.45 40.65 37.85

Movement Libras 53.06 10.83 43.61 39.17

for identifying the internal structure of dataset and scienti�c
visualization.
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We further compare the proposed algorithm to other ag-
glomerative clustering algorithms including single-linkage,
complete-linkage, and average-linkage methods on the UCI
datasets. Speci�cally, we �rst construct the hierarchicalclus-
tering tree using these methods with the pairwise dissimilarity
given by the Euclidean distance. We then �nd the horizontal
cut through the tree that gives a desired number of clusters for
output. The performance comparison is shown in Table 4. One
can see that the proposed algorithm consistently outperforms
the other agglomerative clustering methods. This is because
in addition to the compactness criterion common in agglom-
erative clustering the proposed algorithm also encouragesthe
formation of homogeneous and balanced clusters.

5.2 Superpixel Segmentation

We conducted experiments for superpixel segmentation using
the Berkeley segmentation benchmark [53]. The benchmark
contains300grey images with human-labeled ground truths. In
order to compute the pairwise similarity between neighboring
pixels, we adopt the function

exp(�
(kp � qk2jI (p) � I (q)j)2

2� 2 ) (23)

where p and q are pixel coordinates,kp � qk2 is their L 2

distance, andjI (p) � I (q)j is the absolute value of their
intensity difference. The kernel bandwidth is set to� = 5 :0
throughout the superpixel segmentation experiments.

Superpixel segmentation has a different goal than object
segmentation, and therefore the performance metrics are also
different. We computed three standard metrics which are com-
monly used for evaluating the quality of superpixels: underseg-
mentation error [35][36], boundary recall [6] and achievable
segmentation accuracy [54]. For the sake of completeness we
�rst describe these metrics. We useG = f G1; G2; :::; Gn G g to
represent a ground truth segmentation withnG segments and
jGi j denotes the segment size.

� Undersegmentation error (UE) measures the fraction
of pixel leak across ground truth boundaries. It evaluates
the quality of segmentation based on the requirement that
a superpixel should overlap with only one object. We
utilize the undersegmentation error metric used in Veksler
et al. [36],

UEG(S) =

P
i

P
k :Sk \ G i 6=� jSk � Gi j

P
i jGi j

: (24)

For each ground truth segmentGi we �nd the overlapping
superpixelsSk 's and compute the size of the pixel leaks
jSk � Gi j's. We then sum the pixel leaks over all the
segments and normalize it by the image size

P
i jGi j.

� Boundary recall (BR) measures the percentage of the
natural boundaries recovered by the superpixel bound-
aries. We compute BR using

BR G(S) =

P
p2 � G I (min q2 � S kp � qk < � )

j� Gj
; (25)

which is the ratio of ground truth boundaries that have
a nearest superpixel boundary within an� -pixel distance.

We use� S and� G to denote the union sets of superpixel
boundaries and ground truth boundaries respectively. The
indicator functionI checks if the nearest pixel is within
� distance. In our experiments we set� = 2 .

� Achievable segmentation accuracy (ASA)is a perfor-
mance upperbound measure. It gives the highest accuracy
achievable for object segmentation that utilizes superpix-
els as units. To compute ASA we label each superpixel
with the label of the ground truth segment that has the
largest overlap. The fraction of correctly labeled pixels is
the achievable accuracy,

ASAG(S) =

P
k maxi jSk \ Gi jP

i jGi j
: (26)

These performance metrics are plotted against the number of
superpixels in an image. Algorithms producing better per-
formances with a smaller number of superpixels are more
preferable.

In the �rst experiment, we compared our results with
FH [32], GraphCut superpixel [36], Turbopixels [35] and NCut
superpixel [6] methods using the three evaluation metrics.
The results were obtained by averaging over all the300 gray
images in the dataset.

Figure 8(a) shows the undersegmentation error curves. The
curves for the other methods are duplicated from the original
paper [36]. The proposed algorithm outperforms the state-of-
the-art at all the superpixel counts where the error rate is
reduced by more than50%. It achieves an undersegmentation
error of0:13with 350superpixels while the same performance
is achieved with550 superpixels using GraphCut superpixel
segmentation [36]. With550 superpixels, our undersegmenta-
tion error is0:06.

In Figure 8(b), we plot the boundary recall curves. Again,
the curves for the other methods are duplicated from the orig-
inal paper [36]. The proposed algorithm reduces the missed
boundaries by more than30%compared to the state-of-the-art
at all the superpixel counts. The recall rates of the presented
algorithm are82% and 92% with 200 and 600 superpixels
respectively. The recall rates with the same superpixel counts
are76 and86 percents with FH.

In Figure 8(c), we plot the achievable segmentation accuracy
curves. In this experiment we generated the curves for the
other methods using the original implementations available
online. The proposed algorithm yields a better achievable
segmentation upper-bound at all the superpixel counts—
particularly for smaller number of superpixels. The ASA is
95% with 100 superpixels where the same accuracy can only
be achieved with200 superpixels for the other algorithms.

In the second experiment, we evaluated the segmentation
results visually. Several examples are shown in Figure 9
where the images are partitioned into 100 superpixels. For
better visualization, the ground truth segments are color-coded
and blended on the images, and the superpixel boundaries
recovered by the algorithm are superimposed in white color.
It is dif�cult to notice pixel leaks and the superpixels tendto
divide an image into similar-sized regions which are important
for region based feature descriptors.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

200 300 400 500
0

0.2

0.4

0.6

0.8

1

U
nd

er
se

gm
en

ta
tio

n 
er

ro
r

Num. of superpixels per image

 

 

200 300 400 500 600
0.6

0.7

0.8

0.9

1

B
ou

nd
ar

y 
re

ca
ll

Num. of superpixels per image

 

 

100 200 300 400 500
0.85

0.9

0.95

1

A
ch

ie
va

bl
e 

se
gm

en
ta

tio
n 

ac
cu

ra
cy

Num. of superpixels per image

 

 

GraphCut (ConstInt)

GraphCut (Compact)

FH

NCut

Turbo

Proposed

(a) (b) (c)

Fig. 8. Performance metrics: (a) undersegmentation error, (b) boundary recall, and (c) achievable segmentation
accuracy curves. The proposed algorithm performs signi�ca ntly better in all the metrics at all the superpixel counts.

Fig. 9. Superpixel segmentation examples. The images contain 100 superpixels. The ground truth segments are
color-coded and blended on the images. The superpixels (boundaries shown in white) respect object boundaries and
tend to divide an image into similar-sized regions.

Fig. 10. Nonphotorealistic rendering using superpixels. The images are divided into 150 superpixels and each pixel
is colored by the average color of the superpixel it belongs to. The balanced-size objective renders an artistic effect
capturing the style of thick application of paintbrush common in post-impressionism.

In the third experiment, we evaluated the effectiveness of the
proposed algorithm for nonphotorealistic rendering. Several
examples are shown in Figure 10 which are computed by �rst
dividing the images into 150 superpixels and coloring each
pixel by the average color of the superpixel it belongs to.
Though one might argue that similar effects can be achieved
by other image smoothing techniques, the proposed algorithm
renders similar-sized segments and the smoothing effect cap-
tures the style of thick application of paintbrush — a style
popular in post-impressionism.

In Figure 11 we plot the distributions on superpixel size.
We applied the proposed algorithm to segment the benchmark
images with different numbers of superpixel counts, namely
200, 400, and 600. The superpixels computed using the same
count are pooled to obtain the size distribution for the count.
One can see that these distributions, though of different counts,
all have a similar bell shape. Most of the superpixel sizes are
close to the average size. The superpixels with very small
spatial supports or very large spatial support are rare.

In the last experiment, we analyze the effects of the bal-
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Fig. 11. Superpixel size distribution. We plot the distributions on superpixel sizes obtained by segmenting the image
into (a) 200 superpixels (b) 400 superpixels and (c) 600 superpixels. Each of the distributions has a bell shape. The
proposed algorithm divides the images into similar-sized regions and avoids producing superpixels with very small or
large spatial support.
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Fig. 12. Effect of the balancing preference on the performance metrics.
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Fig. 13. Effect of the kernel bandwidth on the performance metrics.

ancing term,� 0, and the kernel bandwidth,� , parameters on
the quality of segmentation. We observe that competitive seg-
mentation results are achieved with a wide range of parameter
selection.

In Figure 12, we plot the performance curves for a range
of � 0 values for a �xed� = 5 :0. We observed that smaller
� 0 results in better boundary recall rates especially for smaller
superpixel counts, while the results are largely invariantto
this parameter for larger superpixel counts. We further ob-
served that better performances on undersegmentation error
and achievable segmentation accuracy are achieved with a
larger� 0. In general, there is a tradeoff among different metrics
based on the� 0 parameter, and empirically we found that
� 0 = 0 :5 yields a good compromise among these metrics.

In Figure 13, we plot the performance curves for a range
of � values for a �xed � 0 = 0 :5. We observed that a large
range of� values results in comparable performances, namely
from 0:5 to 5. The superpixels are largely insensitive to the

selection of the� parameter.
The proposed algorithm is among the fastest superpixel

segmentation algorithms and takes an average of2:5 seconds
to segment an image on the Berkeley benchmark (481� 321
pixels) on an Intel Core 2 Duo E8400 processor. Compared
to the state-of-the-art methods, it is faster than the Graphcut
superpixel [36] (6:4 seconds), turbopixel [35](15 seconds),
and NCut (5 minutes), whereas it is slower than FH [32](0:5
seconds).

6 SUMMARY

We presented a novel objective function for cluster analysis.
It is a combination of the entropy rate of a random walk
on the data graph and a balancing criterion. The property of
this objective function and its optimization were analyzed. We
showed that, by exploiting its submodularity and a matroid
structure, a simple greedy algorithm can ef�ciently compute
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a performance-guaranteed solution. We have achieved signif-
icant performance improvements for superpixel segmentation
tasks and competitive results compared to the state-of-the-art
clustering algorithms on standard datasets.

We plan to explore user-speci�ed constraints in the cluster-
ing problem. Another interesting research direction is to study
hyper-graph clustering where edges are de�ned over a set of
vertices.
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