

1

Deep Feedforward Generative Models

Ming-Yu Liu, NVIDIA

Deep Feedforward Generative Models

- A generative model is a model for randomly generating data.
- Many deep learning-based generative models exist including Restrictive Boltzmann Machine (RBM), Deep Boltzmann Machines (DBM), Deep Belief Networks (DBN)
- We will focus on deep feedforward generative models.
- We will focus on models that maps a random sample z from a parametric probability distribution to an image x.
 - Variational Autoencoders (Kingma and Welling 2014)
 - Generative Adversarial Networks (Goodfellow et al 2014)

Comparison

Comparison

Model	Input	Output	Operation
Deep Feedforward Discriminative Networks	ImageHigh-dimensional	 A probability distribution of class labels Low-dimensional 	 "Compression" Many down- sampling operations
Deep Feedforward Generative Networks	 Random sample from a parametric probabilistic distribution Low-dimensional 	 A probability distribution of images High-dimensional 	 "Decompression" Many up- sampling operations

Manifold Hypothesis

• Structured high-dimensional data (images) live in a low-dimensional manifold. MNIST:

Learning is usually done by solving $\min_{\theta} \sum_{x_i \in D} ||f_{\theta}(x_i) - x_i||_2^2$ where $f_{\theta}(x_i) = f_{\theta}^{dec}(f_{\theta}^{enc}(x_i))$

Remarks on Autoencoder

- One of the architectures that led to the renaissances of neural networks in 2007.
- In order to avoid learning a trivial identify function, the input sample is noise corrupted.
 Denoising Autoencoder (Vincent et al 2010)
- The hierarchical representation learned in the encoder can be used as a feature extractor for a supervised learning task.
- However, difficult to sample from the latent space.
- Poor generalization: the decoder often just remember the input samples.

Variational Autoencoder

- Put a constraint on the latent space to make sampling easier.
- Constraint the encoder to output a conditional Gaussian distribution for an input sample x_i

$$f_{\theta}^{enc}(x_i) = q_{\theta}(z|x_i) = \mathcal{N}(z|\mu_{\theta}(x_i), I)$$

• The decoder reconstructs the input from a random sample from the conditional distribution $z_i \sim q_{\theta}(z|x_i)$

$$f_{\theta}^{dec}(z_i) = p_{\theta}(x_i | z_i \sim q_{\theta}(z | x_i))$$

• Train the encoder to output a zero mean Gaussian distribution and the decoder to reconstruct the input.

$$\min_{\theta} \sum_{x_i \in D} D_{KL}(\mathcal{N}(z|\mu_{\theta}(x_i), I) || \mathcal{N}(z|0, I)) + E_{z_i \sim q_{\theta}(z|x_i)} \left[\frac{1}{2} \left\| f_{\theta}^{dec}(z_i) - x_i \right\|_2^2 \right]$$

Variational Lower Bound

$$\begin{split} L(\theta|D) &= \sum_{x_i \in D} \log(p_{\theta}(x)) \\ &= \sum_{x_i \in D} \sum_{z} q_{\theta}(z|x) \log(p_{\theta}(x)) \\ &= \sum_{x_i \in D} \sum_{z} q_{\theta}(z|x) \log(\frac{p_{\theta}(z,x)}{p_{\theta}(z|x)}) \\ &= \sum_{x_i \in D} \sum_{z} q_{\theta}(z|x) \log(\frac{p_{\theta}(z,x)}{q_{\theta}(z|x)} \frac{q_{\theta}(z|x)}{p_{\theta}(z|x)}) \\ &= \sum_{x_i \in D} \sum_{z} q_{\theta}(z|x) \log\left(\frac{p_{\theta}(z,x)}{q_{\theta}(z|x)}\right) + \sum_{z} q_{\theta}(z|x) \log\left(q_{\theta}(z|x) \log\left(\frac{q_{\theta}(z|x)}{p_{\theta}(z|x)}\right)\right) \\ &= L_V(\theta|D) + \sum_{x_i \in D} D_{KL}(q_{\theta}(z|x)) ||p_{\theta}(z|x)) \\ &\geq L_V(\theta|D) \end{split}$$

 $L_V(\theta|D)$ is the variational lower bound of the log-likelihood function $L(\theta|D)$.

Maximize the Variational Lower Bound

$$L_{V}(\theta|D) = \sum_{x_{i}\in D} \sum_{z} q_{\theta}(z|x) \log\left(\frac{p_{\theta}(z|x)}{q_{\theta}(z|x)}\right)$$

$$= \sum_{x_{i}\in D} \sum_{z} q_{\theta}(z|x) \log\left(\frac{p_{\theta}(x|z)p(z)}{q_{\theta}(z|x)}\right)$$

$$= \sum_{x_{i}\in D} \sum_{z} q_{\theta}(z|x) \log\left(\frac{p(z)}{q_{\theta}(z|x)}\right) + \sum_{z} q_{\theta}(z|x) \log(p_{\theta}(x|z))$$

$$= \sum_{x_{i}\in D} -D_{KL}(q_{\theta}(z|x))|p(z)) + E_{z_{i}\sim q_{\theta}}(z|x_{i})[\log(p_{\theta}(x|z_{i}))]$$
Regularization Reconstruction
$$\max_{\theta} L_{V}(\theta|D) \Leftrightarrow \min_{\theta} \sum_{x_{i}\in D} D_{KL}(\mathcal{N}(z|\mu_{\theta}(x_{i}), I) ||\mathcal{N}(z|0, I)) + E_{z_{i}\sim q_{\theta}}(z|x_{i}) \left[\frac{1}{2} \left\|f_{\theta}^{dec}(z_{i}) - x_{i}\right\|_{2}^{2}\right]$$

Implementation of VAE

• $D_{KL}(\mathcal{N}(z|\mu_{\theta}(x_i), I) || \mathcal{N}(z|0, I)) = \frac{1}{2} \sum_{d} (\mu_{d,\theta}(x_i))^2$

• Sample approximation $E_{z_i \sim q_\theta(Z|X_i)} \left[\log(p_\theta(x|z_i)) \right] \approx \frac{1}{L} \sum_{l=1}^{L} \frac{1}{2} \left\| f_\theta^{dec} \left(z_i^{(l)} \right) - x_i \right\|_2^2$

Conditional Variational Autoencoder

Attribute2Image

Attributes

Nearest Neighbor

> Vanilla CVAE

disCVAE (foreground)

> disCVAE (full)

Wing_color:black, Primary_color:yellow, Breast_color:yellow, Primary_color:black, Wing_pattern:solid

Drawback of VAE

- Euclidean loss is not a good perceptual loss.
- Regress to the mean and render blurry images
- Difficult to hand-craft a good perceptual loss function.
- Why not learn one?

The blue curve plots the Euclidean loss between a reference image and its translations. The red bar is the Euclidean loss between the reference image and a background image. The Euclidean loss suggests that the background image is more similar to the reference image.

 Forget about how to design an image similarity loss. Let use a deep feedforward discriminative network to verify if a generated image is similar to a real image. (Goodfellow et al 2014)

Goodfellow et al "Generative Adversarial Networks" NIPS 2014

- Generator: map a random sample from a Gaussian distribution to an image.
- Discriminator: Differentiate a generated image from a real image.

• The generator and the discriminator is playing a zero-sum game.

•
$$\min_{\phi} \max_{\varphi} E_{x \sim p_{data}(x)} \left[\log f_{\varphi}^{dis}(x) \right] + E_{z \sim p_{Z}(z)} \left[\log \left(1 - f_{\varphi}^{dis} \left(f_{\phi}^{gen}(z) \right) \right) \right]$$

- What does this optimization do?
- For a fixed generator $f_{\phi}^{gen}(z)$, the optimal discriminator is $f_{\phi}^{dis}(x) = \frac{p_{data}(x)}{p_{data}(x) + f_{\phi}^{gen}(z)}$.

$$\begin{split} & \min_{\phi} \max_{\varphi} E_{x \sim p_{data}(x)} \left[\log f_{\varphi}^{dis}(x) \right] + E_{z \sim p_{Z}(z)} \left[\log(1 - f_{\varphi}^{dis}\left(f_{\phi}^{gen}(z)\right)) \right] \\ &= \min_{\phi} E_{x \sim p_{data}(x)} \left[\log \frac{p_{data}(x)}{p_{data}(x) + f_{\phi}^{gen}(z)} \right] + E_{z \sim p_{Z}(z)} \left[\log \frac{f_{\phi}^{gen}(z)}{p_{data}(x) + f_{\phi}^{gen}(z)} \right] \\ &= \min_{\phi} D_{KL}(p_{data}(x)) \left\| \frac{p_{data}(x) + f_{\phi}^{gen}(z)}{2} \right) + D_{KL}(f_{\phi}^{gen}(z)) \left\| \frac{p_{data}(x) + f_{\phi}^{gen}(z)}{2} \right) - \log(4) \end{split}$$

$$= \min_{\phi} D_{JS}(p_{data}(x)) | | f_{\phi}^{gen}(z)) - \log(4)$$

Jensen-Shannon Divergence

Generative Adversarial Network Training

•
$$V(\varphi, \phi) = E_{x \sim p_{data}(x)} \left[\log f_{\varphi}^{dis}(x) \right] + E_{z \sim p_{Z}(z)} \left[\log(1 - f_{\varphi}^{dis}\left(f_{\phi}^{gen}(z)\right)) \right]$$

- $\min_{\phi} \max_{\varphi} V(\varphi, \phi)$
- Alternating gradient descent
- Fix ϕ (generator), apply a stochastic gradient ascent step on $V(\varphi, \phi)$.
- Fix φ (discriminator), apply a stochastic gradient descent step on $V(\varphi, \phi)$.

Deep Convolutional Generative Adversarial Networks

Radford et al. "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

Deep Convolutional Generative Adversarial Networks

Radford et al. "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

Deep Convolutional Generative Adversarial Networks

Radford et al. "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR²2016

InfoGAN: Interpretable Representation Learning by Information Maximizing GAN

Chen et al. "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets", NIPS 2016

InfoGAN: Interpretable Representation Learning by Information Maximizing GAN

(c) Varying c_2 from -2 to 2 on InfoGAN (Rotation)

(d) Varying c_3 from -2 to 2 on InfoGAN (Width)

Chen et al. "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets", NIPS 2016

InfoGAN: Interpretable Representation Learning by Information Maximizing GAN

(a) Azimuth (pose)

(b) Elevation

(c) Lighting

(d) Wide or Narrow

Chen et al. "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets", NIPS 2016

VAE and GAN Comparison

Model	Optimization	Image Quality	Generalization
Variational Autoencoders (VAE)	 Stochastic gradient descent Converge to local minimum Easier 	SmoothBlurry	 Tend to remember input images
Generative Adversarial Networks (GAN)	 Alternating stochastic gradient descent Converge to saddle points Harder 	SharpArtifact	 Generate new unseen images

VAE/GAN Model

VAE/GAN Model

Input

VAE

 VAE_{Dis_l}

VAE/GAN

Larsen et al. "Autoencoding beyond pixels using a learned similarity metric", ICML 2016

VAE/GAN Model

Figure 5. Using the VAE/GAN model to reconstruct dataset samples with visual attribute vectors added to their latent representations.

Larsen et al. "Autoencoding beyond pixels using a learned similarity metric", ICML 2016

Applications

- Image Superresolution
- Inpainting
- Image Editing
- Domain Adaptation

Application: Image Super-resolution

Minimize

- Adversarial Loss
- Content Loss
- TV-norm

Ledig et al, "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" arXiv 1609.0480

Application: Image Super-resolution

original

bicubic (21.59dB/0.6423)

SRResNet (23.44dB/0.7777)

SRGAN (20.34dB/0.6562)

PSNR/SSIM

32

Ledig et al, "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" arXiv 1609.0480

33

Application: Image Super-resolution

Ledig et al, "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" arXiv 1609.0480

Image Inpaiting

Let \bar{x} be a corrupted images. By solving

We can get the inpainted image by

$$x = f_{\phi}^{gen}(z^*)$$

Inpainted images w/wo perceptual loss

 $z^* = \underset{z}{\operatorname{argmin}} \log(1 - f_{\varphi}^{dis}(f_{\varphi}^{gen}(z)) + \left\| M \odot f_{\varphi}^{gen}(z) - M \odot \bar{x} \right\|_{2}^{2}$

Yeh et al, "Semantic Image Inpainting with Perceptual and Contextual Losses" arXiv 1607.07539

Generative Visual Manipulation on the Natural Image Manifold

Generative Visual Manipulation on the Natural Image Manifold

Let x_0 be an input image. Find the hidden code that the generator would use

$$z_0 = \underset{z}{\operatorname{argmin}} L(x_0, G(z))$$

The user then made some edits. The edits are given as constraints. We then solve the optimization problem for find a new hidden code that resembles the original image while satisfying the constraints by solving

$$z^* = \underset{z \in \mathbb{Z}}{\operatorname{arg\,min}} \quad \underbrace{\sum_{g} \|f_g(G(z)) - v_g\|^2}_{\text{data term}} + \underbrace{\lambda_s \cdot \|z - z_0\|^2}_{\text{manifold}} + \lambda_D \cdot \log(1 - D(G(z))) \quad \text{Perceptual loss}$$

Generative Visual Manipulation on the Natural Image Manifold

Zhu et al, "Generative Visual Manipulation on the Natural Image Manifold" ECCV 2016

Coupled Generative Adversarial Networks

Learn joint distribution of multi-domain images without any corresponding images in the different domains.

- $p(X_1, X_2, ..., X_N)$: where X_i are images of the scene in different modalities.
- Ex. $p(X_{color}, X_{thermal}, X_{depth})$:

Coupled Generative Adversarial Networks

- Define domain by attribute. •
- Multi-domain images are views of an object with different attributes. •

鄙国恭發 **喜**殿 喜財

Non-smiling Smiling Non-beard

Young

Font#1 Font#2

Hand-drawings images Liu et al, "Coupled Generative Adversarial Networks" NIPS 2016

summer

winter

Coupled Generative Adversarial Networks

NO CORRESPONDINGTable 1: Numbers of training images in Domain 1 and Domain 2 in the MNIST experiments.

	Task A	Task \mathbb{B}
	Pair generation of digits and	Pair generation of digits and
	corresponding edge images	corresponding negative images
# of images in Domain 1	30,000	30,000
# of images in Domain 2	30,000	30,000

Figure 3: Training images from the RGBD dataset [3].

Table 3: Numbers of RGB and depth training images in the RGBD experiments.

# of RGB images	125,000
# of depth images	125,000

Figure 4: Training images from the NYU dataset [4].

Table 4: Numbers of RGB and depth training images in the NYU experiments.

# of RGB images	514,192
# of depth images	1,449

Figure 2: Training images from the Celeba dataset [2].

Table 2: Numbers of training images of different attributes in the pair face generation experiments.

Attribute	Smiling	Blond hair	Glasses
# of images with the attribute	97,669	29,983	13,193
# of images without the attribute	104,930	172,616	189,406

Application: Unsupervised Domain Adaptation

Unsupervised Domain Adaptation

Conclusions

- We discussed two popular deep generative models
 - Variational Autoencoders
 - Generative Adversarial Networks
- We discussed their pros and cons and how to take the best from both.
- We discussed several computer vision applications of these models.
- Many other applications and interesting properties of these deep generative models are waiting for your exploration.